Informative Data and Uncertainty

in Stock Assessment

Arni Magnusson

Ph.D. defense

School of Aquatic and Fishery Sciences

University of Washington

5 February 2016

Outline

Introduction

Uncertainty in stock assessment, research questions

Outline

Introduction
Uncertainty in stock assessment, research questions

Papers 1 \& 2 (simulation studies)
Informative data, stock status, key parameters
Delta method, bootstrap, MCMC

Outline

Introduction

Uncertainty in stock assessment, research questions

Papers 1 \& 2 (simulation studies)
Informative data, stock status, key parameters
Delta method, bootstrap, MCMC

Paper 3 (synthesis and case study)
Broader overview, application of methods to Icelandic saithe
Profile likelihood, retro, bivariate confidence region, HCR

Outline

Introduction

Uncertainty in stock assessment, research questions

Papers 1 \& 2 (simulation studies)
Informative data, stock status, key parameters
Delta method, bootstrap, MCMC

Paper 3 (synthesis and case study)
Broader overview, application of methods to Icelandic saithe Profile likelihood, retro, bivariate confidence region, HCR

Conclusions
Summary of findings, general recommendations

Uncertainty in stock assessment

Fisheries management relies on stock assessment

Stock status, harvest rate, reference points, key parameters

Not just the most likely value, but a range of plausible values

Uncertainty in stock assessment

Fisheries management relies on stock assessment

Stock status, harvest rate, reference points, key parameters

Not just the most likely value, but a range of plausible values

Give advice that is robust to violated assumptions

Failure to incorporate uncertainty into the management advice \rightarrow suboptimal yields, fishery collapse

Research questions

What makes some datasets more informative than others?

Research questions

What makes some datasets more informative than others?

How reliable are statistical methods to measure uncertainty?

Research questions

What makes some datasets more informative than others?

How reliable are statistical methods to measure uncertainty?

What are good practices for confronting uncertainty?

Study design

Simulation studies 1-2
Generate random datasets where the true values are known
Evaluate the performance of statistical methods
Typical groundfish data and age-structured model

Study design

Simulation studies 1-2
Generate random datasets where the true values are known
Evaluate the performance of statistical methods
Typical groundfish data and age-structured model

Review \& case study 3
Review findings from simulation studies
Apply same methods to Icelandic saithe, interpret results
Demonstrate additional methods to confront uncertainty

Paper 1

FISH and FISHERIES, 2007, 8, 337-358

What makes fisheries data informative?

Arni Magnusson ${ }^{1,2} \&$ Ray Hilborn ${ }^{1}$

Paper 1

FISH and FISHERIES, 2007, 8, 337-358

What makes fisheries data informative?

Arni Magnusson ${ }^{1,2}$ \& Ray Hilborn ${ }^{1}$

Informative fishing history?

Informative fishing history?

Key parameters: h, M, r

h : stock-recruitment steepness

Key parameters: h, M, r

h : stock-recruitment steepness only if data include very low SSB

Key parameters: h, M, r

h : stock-recruitment steepness only if data include very low SSB

M : natural mortality rate

Key parameters: h, M, r

h : stock-recruitment steepness only if data include very low $S S B$

M : natural mortality rate only if data include high \& low F

Key parameters: h, M, r

h : stock-recruitment steepness only if data include very low $S S B$

M : natural mortality rate only if data include high \& low F

r : right-hand selectivity

Key parameters: h, M, r

h : stock-recruitment steepness only if data include very low $S S B$

M : natural mortality rate only if data include high \& low F

r : right-hand selectivity confounded with M

Paper 2

Measuring uncertainty in fisheries stock assessment: the delta method, bootstrap, and MCMC

Arni Magnusson ${ }^{1,2}$, André E Punt ${ }^{1}$ \& Ray Hilborn ${ }^{1}$

Paper 2

Measuring uncertainty in fisheries stock assessment: the delta method, bootstrap, and MCMC

Arni Magnusson ${ }^{1,2}$, André E Punt ${ }^{1}$ \& Ray Hilborn ${ }^{1}$

Uncertainty methods: delta, boot, mcmc

Procedure

Delta method

$$
\widehat{\mathrm{SE}}_{\hat{g}}=\sqrt{\sum_{i} \sum_{j} \widehat{\operatorname{Cov}}\left(\hat{\theta}_{i}, \hat{\theta}_{j}\right)\left(\frac{\partial g}{\partial \theta_{i}}\right)\left(\frac{\partial g}{\partial \theta_{j}}\right)}
$$

simulate datasets y^{*}

Interval

$\left[\hat{g}-z_{1-\alpha / 2} \widehat{\mathrm{SE}}_{\hat{g}}, \quad \hat{g}+z_{1-\alpha / 2} \widehat{\mathrm{SE}}_{\hat{g}}\right]$
$\left[\frac{\alpha}{2}\right.$ quantile from ${ }_{\mathrm{BC}} \overrightarrow{\hat{\theta}}^{\star}, \quad\left(1-\frac{\alpha}{2}\right)$ quantile from $\left.{ }_{\mathrm{BC}} \overrightarrow{\hat{\theta}}^{\star}\right]$
$\left[\frac{\alpha}{2}\right.$ quantile from $\vec{\theta}, \quad\left(1-\frac{\alpha}{2}\right)$ quantile from $\left.\vec{\theta}\right]$

Uncertainty methods: delta, boot, mcmc

Performance

Delta
method
Bootstrap

MCMC

Uncertainty methods: delta, boot, mcmc

Performance

Delta
method

Bootstrap

MCMC

Best in terms of worst-case performance

Paper 3

Confronting Uncertainty

in Stock Assessment

Paper 3

Confronting Uncertainty

in Stock Assessment

Icelandic saithe

Biomass and harvest rate

Biomass and harvest rate

$20 \% \mathrm{HCR}: \quad T A C_{t}=\frac{0.20 B_{t, \mathbf{4}+}+T A C_{t-\mathbf{1}}}{2}$

Recruitment and surplus production

Fishing history

Fishing history

Fishing history

Fishing history

Retrospective analysis

Bivariate confidence region

Estimating M

Base model M = 0.2

Estimated M = 0.57

Estimating M

Base model $\mathbf{M}=0.2$

Estimated $\mathbf{M}=0.57$

Estimating h and M

Stock-recruitment steepness
$h=0.90$ in base model
Point estimate is 0.99

Estimating h and M

Stock-recruitment steepness
$h=0.90$ in base model
Point estimate is 0.99

Estimating h and M

Stock-recruitment steepness
$h=0.90$ in base model
Point estimate is 0.99

Natural mortality rate
$M=0.20$ in base model
Point estimate is 0.57

Estimating h and M

Stock-recruitment steepness
$h=0.90$ in base model
Point estimate is 0.99

Natural mortality rate $M=0.20$ in base model

Point estimate is 0.57

Summary of findings

Fishing history
One-way-trip proved no less informative than good contrast
'the more fish you catch, the better you know how many there were'

Key parameters
h : data must include years with very low SSB
M : data must include high and low F
r : confounded with M

Uncertainty methods
MCMC, delta method, profile likelihood more reliable than bootstrap

General recommendations

1 Use more than one method to evaluate uncertainty.
2 Keep in mind that the real uncertainty is greater than the analytical confidence intervals indicate.

3 Use more than one model and variations of models to evaluate how sensitive the main conclusions are to alternative assumptions.

4 Use retrospective analysis to evaluate uncertainty from an empirical viewpoint.

General recommendations

5 Use simulation analysis to evaluate the performance of the estimation model, which parameters can be estimated reliably, and which uncertainty methods work best.

6 Examine the fishing history to evaluate whether the data are likely to be informative about the stock status and key parameters like h and M.

7 Consider ways to reduce uncertainty by generating informative data via management (e.g., applying different fishing mortalities between years) and research (e.g., design a dedicated survey for a given stock, sample age data).

8 Harvest control rules can be a practical way to incorporate uncertainty into management advice.

Value

Comprehensive overview and evaluation of methods to analyze uncertainty

Value

Comprehensive overview and evaluation of methods to analyze uncertainty

Checklist of recommendations for stock assessment practitioners

Acknowledgements

Committee: Ray, André, Jim, John, Christine

Staff: Amy, Machelle

ADMB friends: Dave, Hans, Johnoel, Jim, Mark, Anders, John
Latino friends: Billy, Juan, Caro, Nico, Julian, Ana, Lobo
NZ friends: Allan, Trevor, Vivian, Brandon, Paul
New friends: Punt lab, Hilborn lab, Branch lab, Essington lab

Icelandic mentors: Gunnar, Jakob, Björn
Family here today: Kristbjörg, Steini, Johannes, Sylvia
Family home: Steffí, Emma, Sigga, Pórunn, Magnús, Dedda, Sverrir

Thank you!

