Informative Data and Uncertainty in Stock Assessment

Arni Magnusson Ph.D. defense

School of Aquatic and Fishery Sciences University of Washington 5 February 2016

Outline

Introduction

Uncertainty in stock assessment, research questions

Outline

Introduction

Uncertainty in stock assessment, research questions

Papers 1 & 2 (simulation studies)

Informative data, stock status, key parameters Delta method, bootstrap, MCMC

Outline

Introduction

Uncertainty in stock assessment, research questions

Papers 1 & 2 (simulation studies)

Informative data, stock status, key parameters Delta method, bootstrap, MCMC

Paper 3 (synthesis and case study)

Broader overview, application of methods to Icelandic saithe Profile likelihood, retro, bivariate confidence region, HCR

Outline

Introduction

Uncertainty in stock assessment, research questions

Papers 1 & 2 (simulation studies)

Informative data, stock status, key parameters Delta method, bootstrap, MCMC

Paper 3 (synthesis and case study)

Broader overview, application of methods to Icelandic saithe Profile likelihood, retro, bivariate confidence region, HCR

Conclusions

Summary of findings, general recommendations

Uncertainty in stock assessment

Fisheries management relies on stock assessment

Stock status, harvest rate, reference points, key parameters

Not just the most likely value, but a range of plausible values

Uncertainty in stock assessment

Fisheries management relies on stock assessment

Stock status, harvest rate, reference points, key parameters

Not just the most likely value, but a range of plausible values

Give advice that is robust to violated assumptions

Failure to incorporate uncertainty into the management advice \rightarrow suboptimal yields, fishery collapse

Research questions

What makes some datasets more informative than others?

Research questions

What makes some datasets more informative than others?

How reliable are statistical methods to measure uncertainty?

Research questions

What makes some datasets more informative than others?

How reliable are statistical methods to measure uncertainty?

What are good practices for confronting uncertainty?

Study design

Simulation studies 1-2

Generate random datasets where the true values are known Evaluate the performance of statistical methods Typical groundfish data and age-structured model

Study design

Simulation studies 1-2

Generate random datasets where the true values are known Evaluate the performance of statistical methods Typical groundfish data and age-structured model

Review & case study 3

Review findings from simulation studies Apply same methods to Icelandic saithe, interpret results Demonstrate additional methods to confront uncertainty

Fishing history Key parameters

Paper 1

FISH and FISHERIES, 2007, 8, 337-358

What makes fisheries data informative?

Arni Magnusson^{1,2} & Ray Hilborn¹

Fishing history Key parameters

Paper 1

FISH and FISHERIES, 2007, 8, 337-358

What makes fisheries data informative?

Arni Magnusson^{1,2} & Ray Hilborn¹

Fishing history Key parameters

Informative fishing history?

Fishing history Key parameters

Informative fishing history?

1 Informative data

2 Uncertainty methods 3 Confronting uncertainty Key parameters

Key parameters: h, M, r

h : stock-recruitment steepness

3 Confronting uncertainty

Fishing history Key parameters

Key parameters: h, M, r

h : stock-recruitment steepness only if data include very low *SSB*

3 Confronting uncertainty

Fishing history Key parameters

Key parameters: h, M, r

h : stock-recruitment steepness only if data include very low *SSB*

M : natural mortality rate

3 Confronting uncertainty

Fishing history Key parameters

Key parameters: h, M, r

h : stock-recruitment steepness only if data include very low *SSB*

M : natural mortality rate only if data include high & low F

3 Confronting uncertainty

Fishing history Key parameters

Key parameters: h, M, r

h : stock-recruitment steepness only if data include very low *SSB*

M : natural mortality rate only if data include high & low F

r : right-hand selectivity

3 Confronting uncertainty

Fishing history Key parameters

Key parameters: h, M, r

h : stock-recruitment steepness only if data include very low *SSB*

M : natural mortality rate only if data include high & low F

r : right-hand selectivity confounded with *M*

Methods Performance

Paper 2

FISH and FISHERIES, 2013, 14, 325-342

Measuring uncertainty in fisheries stock assessment: the delta method, bootstrap, and MCMC

Arni Magnusson^{1,2}, André E Punt¹ & Ray Hilborn¹

Methods Performance

Paper 2

FISH and FISHERIES, 2013, 14, 325-342

Measuring uncertainty in fisheries stock assessment: the delta method, bootstrap, and MCMC

Arni Magnusson^{1,2}, André E Punt¹ & Ray Hilborn¹

Methods Performance

Uncertainty methods: delta, boot, mcmc

	Procedure	Interval
Delta method	$\widehat{\mathrm{SE}}_{\hat{\theta}} = \sqrt{\sum_{i} \sum_{j} \widehat{\mathrm{Cov}} \left(\hat{\theta}_{i}, \hat{\theta}_{j} \right) \left(\frac{\partial g}{\partial \theta_{i}} \right) \left(\frac{\partial g}{\partial \theta_{j}} \right)}$	$\left[\hat{g} - z_{1-\alpha/2}\widehat{\mathrm{SE}}_{\hat{g}}, \ \hat{g} + z_{1-\alpha/2}\widehat{\mathrm{SE}}_{\hat{g}}\right]$
Bootstrap	simulate datasets y*	$\left[\frac{\alpha}{2} \text{ quantile from }_{\mathrm{BC}}\vec{\vec{\theta}}^{*}, \left(1-\frac{\alpha}{2}\right) \text{ quantile from }_{\mathrm{BC}}\vec{\vec{\theta}}^{*}\right]$
МСМС	simulate parameter values	$\left[\frac{\alpha}{2} \text{ quantile from } \vec{\theta}, \left(1 - \frac{\alpha}{2}\right) \text{ quantile from } \vec{\theta}\right]$

Methods Performance

Uncertainty methods: delta, boot, mcmc

Confidence level

Methods Performance

Uncertainty methods: delta, boot, mcmc

Performance

1 Informative dataData, model estim2 Uncertainty methodsFishing history3 Confronting uncertaintyDiagnostics, uncertainty

Paper 3

Confronting Uncertainty in Stock Assessment

1 Informative dataData, model estim2 Uncertainty methodsFishing history3 Confronting uncertaintyDiagnostics, uncertainty

Paper 3

Confronting Uncertainty in Stock Assessment

Data, model estimates Fishing history Diagnostics, uncertainty

Icelandic saithe

Data, model estimates Fishing history Diagnostics, uncertainty

Biomass and harvest rate

Year

Data, model estimates Fishing history Diagnostics, uncertainty

Biomass and harvest rate

Data, model estimates Fishing history Diagnostics, uncertainty

Recruitment and surplus production

1 Informative dataData, model estimates2 Uncertainty methodsFishing history3 Confronting uncertaintyDiagnostics, uncertainty

Data, model estimates Fishing history Diagnostics, uncertainty

1 Informative dataData, model estimates2 Uncertainty methodsFishing history3 Confronting uncertaintyDiagnostics, uncertainty

1 Informative dataData, model estimates2 Uncertainty methodsFishing history3 Confronting uncertaintyDiagnostics, uncertainty

Data, model estimates Fishing history Diagnostics, uncertainty

Retrospective analysis

Data, model estimates Fishing history Diagnostics, uncertainty

Bivariate confidence region

1 Informative dataData, model estimates2 Uncertainty methodsFishing history3 Confronting uncertaintyDiagnostics, uncertainty

Estimating M

Base model M = 0.2

Estimated M = 0.57

1 Informative dataData, model estimates2 Uncertainty methodsFishing history3 Confronting uncertaintyDiagnostics, uncertainty

Estimating M

Base model M = 0.2

1 0.3 0.3 0.1 0.3 0.1 0.3 0.1 0.3 \sim 0.3

Estimated M = 0.57

Data, model estimates Fishing history Diagnostics, uncertainty

Estimating h and M

Stock-recruitment steepness

- h = 0.90 in base model
- Point estimate is 0.99

Data, model estimates Fishing history Diagnostics, uncertainty

Estimating h and M

Stock-recruitment steepness

h = 0.90 in base model

Point estimate is 0.99

Data, model estimates Fishing history Diagnostics, uncertainty

Estimating h and M

Stock-recruitment steepness

h = 0.90 in base model

Point estimate is 0.99

Natural mortality rate

M = 0.20 in base model

Point estimate is 0.57

Data, model estimates Fishing history Diagnostics, uncertainty

Estimating h and M

Stock-recruitment steepness

h = 0.90 in base model

Point estimate is 0.99

Natural mortality rate

M = 0.20 in base model

Point estimate is 0.57

Summary of findings

Fishing history

One-way-trip proved no less informative than good contrast

'the more fish you catch, the better you know how many there were'

Key parameters

- h : data must include years with very low SSB
- M : data must include high and low F
- r : confounded with M

Uncertainty methods

MCMC, delta method, profile likelihood more reliable than bootstrap

General recommendations

- 1 Use more than one method to evaluate uncertainty.
- 2 Keep in mind that the real uncertainty is greater than the analytical confidence intervals indicate.
- 3 Use more than one model and variations of models to evaluate how sensitive the main conclusions are to alternative assumptions.
- 4 Use retrospective analysis to evaluate uncertainty from an empirical viewpoint.

General recommendations

- 5 Use simulation analysis to evaluate the performance of the estimation model, which parameters can be estimated reliably, and which uncertainty methods work best.
- 6 Examine the fishing history to evaluate whether the data are likely to be informative about the stock status and key parameters like *h* and *M*.
- 7 Consider ways to reduce uncertainty by generating informative data via management (e.g., applying different fishing mortalities between years) and research (e.g., design a dedicated survey for a given stock, sample age data).
- 8 Harvest control rules can be a practical way to incorporate uncertainty into management advice.

Comprehensive overview and evaluation

of methods to analyze uncertainty

Comprehensive overview and evaluation

of methods to analyze uncertainty

Checklist of **recommendations** for stock assessment practitioners

Acknowledgements

Committee: Ray, André, Jim, John, Christine

Staff: Amy, Machelle

ADMB friends: Dave, Hans, Johnoel, Jim, Mark, Anders, John Latino friends: Billy, Juan, Caro, Nico, Julian, Ana, Lobo NZ friends: Allan, Trevor, Vivian, Brandon, Paul New friends: Punt lab, Hilborn lab, Branch lab, Essington lab

Icelandic mentors: Gunnar, Jakob, Björn Family here today: Kristbjörg, Steini, Johannes, Sylvia Family home: **Steffí, Emma**, Sigga, Þórunn, Magnús, Dedda, Sverrir

Thank you!

