
SOFIA Transparent

Analytical Framework

Design and development progress

Repos Scripts Results Database SOFIA

Warehouse

Arni Magnusson

December 2021

Contents

1 Executive summary 3

2 Introduction 3
2.1 Background . 3
2.2 Objectives . 4
2.3 Project management . 4

3 Design 5
3.1 TSAF repositories . 5
3.2 Input data warehouse . 8
3.3 R package . 8
3.4 Database . 8

4 Development status and next steps 9
4.1 TSAF repositories . 9
4.2 Input data warehouse . 11
4.3 R package . 12
4.4 Database . 13

5 Acknowledgements 14

6 References 14

A Arni’s contributions in 2021 15

2

1 Executive summary

This report gives a brief overview of the design and development progress of
the new Transparent SOFIA Analytical Framework (TSAF) that was initiated
in March 2021. As of December 2021, the design is nearly complete and the
implementation is underway. The overall framework consists of four components:

• TSAF repositories, where each repository contains one analysis, calculating
the status of stocks in a given area.

• Input data warehouse, with fisheries data for all areas and stocks.

• R package, a collection of utilities that are commonly used in TSAF analyses.

• Database, storing the results from all TSAF analyses.

At the end of this report is an appendix, listing Arni Magnusson’s contributions
in 2021 to TSAF design and development.

2 Introduction

2.1 Background

In March 2021, Rishi Sharma contacted Arni Magnusson to explore the possibility
of collaboration to design a new way to organize the analysis of the State of
the World Fisheries and Aquaculture (SOFIA). From his years at ICES, Arni had
experience in designing the Transparent Assessment Framework (TAF, ICES 2021)
which is used to organize the stock assessment and advisory workflow for a large
number of ICES stock assessments each year.

The first exploratory step was to convert an existing SOFIA analysis, from a single
monolithic R Markdown document to TAF format, using Area 37 as a prototype.
This was done by creating a GitHub repository and splitting the analysis into
four R scripts: data.R, model.R, output.R, and report.R. Splitting the analysis
in this way into discrete steps made it more manageable, easier to maintain and
modify. The TAF format also provides improved data provenance, tracking what
each input data file contains and where the data came from.

The next step was to make incremental improvements in the R code and to give
objects and files short and generic names that are consistent between different
SOFIA analyses. The prototype analysis of Area 37 was then presented in April
2021 to the FAO team overseeing the SOFIA analysis, Pedro Barros and colleagues,
for feedback and direction.

Having completed the prototype, it was time to research and develop an efficient
and practical way to organize a large number of SOFIA analyses in a similar
way, and then summarize the results to the level presented in the SOFIA report
(FAO 2020). A TSAF development team was formed, consisting of Rishi Sharma,
Arni Magnusson, and Nicole Tursich, with regular meetings and close technical
collaboration.

3

2.2 Objectives

It is not for this author to define or prioritize the objectives of TSAF to support the
overall analysis behind SOFIA. However, the following topics are worth mentioning,
as a context for some of the design decisions and features that are being developed.

Efficiency is the ability to edit code in a single place to modify a large number of
analyses, and to calculate top-level summary statistics from a large number
of analyses.

Clarity is the ability to easily navigate to a specific part of the analysis of a
particular stock group and area, and to look up a specific result from one or
more analyses.

Traceability is the ability to backtrack exactly how a specific result was calculated,
such as the status of a particular stock group in a given area.

Open science is the ability to make the R scripts available online, along with the
input data required for the scripts to run, inviting peer review of methodology
and scientific collaboration.

Reproducibility is the ability to run analyses on a variety of computers, e.g.,
a personal Windows laptop or a high-performance Linux cluster, to get the
exact same result—also when the analysis is rerun months or years later.

Quality assurance is the design and adoption of a workflow that reduces the
probability of making human mistakes when preparing, modifying, running,
and postprocessing the results from analyses.

Quality control is the ability to identify where a human mistake has been made
in a given analytical process, so the mistake can be located and corrected.

The initial development of TSAF has focused especially on Tier 2 cases of SOFIA
analyses, where official stock assessments are not available, but catch and effort
data exist as a basis for estimating stock status using data-limited methods.

The TSAF design also aims to serve as a platform to organize Tier 1 analyses
(deriving stock status from official stock assessments) as well as Tier 3 analyses
(deriving stock status estimates from expert elicitation). These tiers will require
less R code than Tier 2 but use the same structure for R scripts and data prove-
nance to document exactly how the stock status was calculated.

2.3 Project management

A project board (https://github.com/sofia-tsaf/project) is used to track
TSAF development progress, along with a discussion board, milestones, and issue
tracker.

4

https://github.com/sofia-tsaf/project

3 Design

The TSAF design (Figure 1) is based on repositories containing R scripts that
read input from a data warehouse to estimate stock status. These results are
then stored in a dedicated TSAF database, which serves as the foundation for
calculating summary statistics for the final SOFIA report.

Repos Scripts Results Database SOFIA

Warehouse

Figure 1. TSAF diagram, showing the flow of information from individual
repositories (analyses of stocks and areas) to the final SOFIA report.

The scripts use a dedicated R package called TSAF. The next sections describe each
component of the TSAF design in some detail: repositories, input data warehouse,
R package, and the database.

3.1 TSAF repositories

3.1.1 Repository features

Each TSAF repository is a unit of analysis, corresponding to a specific area and
stocks. A GitHub repository, sometimes abbreviated as ‘repo’, is an online directory
that is especially convenient for organizing text files, such as scripts and data files.
GitHub repository features relevant for TSAF include:

• Ability to make scripts available online, for browsing and downloading, along
with the input data required for the scripts to run.

• Automatic backup of all files with the ability to return to previous saved
states.

5

• Tracked changes showing who changed what and when, supporting online
teamwork.

• Ability to tag specific saved states of the analysis and give them descriptive
names, such as ‘starting point‘, ‘2021 data‘ or ‘results imported to database‘.

• Ability to upload large attachments (>100 MB) to accompany tagged states.

• Online facilities to compare text files and view changes, line by line.

3.1.2 R scripts

The analysis inside each repository consists of a set of R scripts that are organized
in TAF format (Magnusson and Millar 2021). This means there are four standard
scripts (Table 1) that conduct and document the analysis:

Table 1. Standard TAF scripts for a given analysis.

Script Purpose

data.R Preprocess data, write TAF data tables

model.R Run analysis, write model results

output.R Extract results of interest, write TAF output tables

report.R Prepare plots and formatted tables

The TAF scripts are run sequentially, each reading files that were created in
a previous step. The first script, data.R, reads data files that were declared
and documented in a DATA.bib text file. A similar SOFTWARE.bib file can be
used to declare specific versions of software used in the analysis, to strengthen
reproducibility.

bib bib

data model output report

data software

scripts

Figure 2. TAF scripted workflow. Each TSAF repository/analysis contains
four standard R scripts that are run sequentially. The initial data and software
are declared in so-called bib files.

6

The R scripts conducting TSAF analyses rely especially on three R packages:

• TSAF – a new dedicated package to support TSAF
(Sharma and Magnusson 2021)

• TAF – utilities to manage scripts, data files, metadata, and R data objects
(Magnusson and Millar 2021)

• sraplus – biomass dynamics model with Bayesian priors
(Ovando 2019)

3.1.3 Repository names and directory structure

GitHub repositories are given descriptive names, such as

https://github.com/sofia-tsaf/2021Area37Coastal

for the analysis conducted in 2021 of coastal stocks in Area 37.

On a personal laptop or a high-performance cluster, the TSAF repositories are
organized in a hierarchical directory structure (Figure 3), similar to the repository
name as year/area/stock group.

2021

37

coastal

https://github.com/sofia-tsaf/2021Area37Coastal

data.R

model.R

. . .

Remote repository

Local directory structure

Figure 3. TSAF local directory structure, showing the similarity between the
remote repository name and the local directory names.

This hierarchical directory structure is practical to navigate and run the analyses,
access results, and run top-level summary calculations across a large number of
analyses.

7

https://github.com/sofia-tsaf/2021Area37Coastal

3.2 Input data warehouse

The input data warehouse contains fisheries data for all areas and stocks. For
TSAF analyses of Tier 2 stocks, the focus is on catch and effort data, which are
organized in two GitHub repositories:

https://github.com/sofia-tsaf/catches

https://github.com/sofia-tsaf/effort

Individual TSAF analyses start by reading catch and effort data from the data
warehouse. In this way, the input data for all analyses are stored in one central
place, where they can be updated, documented, and quality checked.

3.3 R package

The TSAF package (Sharma and Magnusson 2021) contains utilities that are
commonly used in TSAF analyses. It is developed in a dedicated GitHub repository:

https://github.com/sofia-tsaf/TSAF

The TSAF package provides a single place to modify a large number of TSAF
analyses. Incremental improvements become more manageable, e.g., changing the
format of a specific plot, without having to edit each and every TSAF analysis. It
also makes the R scripts for each analysis shorter and thus easier to read, write,
and maintain.

3.4 Database

The TSAF database will contain the results from all the individual TSAF analyses.
The primary focus of the database is on stock status, both in numerical terms and
in categorical terms: underfished, fully fished, and overfished.

The database is the central node and key component of the TSAF design. The
only way to enter data into the database is via TSAF analyses, as indicated in
the TSAF diagram (Figure 1), and when TSAF analyses of a specific areas and
stocks are updated, the database is automatically updated. Furthermore, the top-
level analysis for the final SOFIA report, aggregating a large number of TSAF
analyses, should be based on queries to the database.

The above design guarantees the traceability of SOFIA results, all the way from
the individual datasets and analyses to the final published report.

The database is also a convenient stage in the pipeline to apply quality control.
Examples of quality checks could include referential integrity of species and stock
names, summary statistics at different levels of aggregation, counting stocks in
each area, plotting the distribution of numerical stock status, etc. This will ensure
that all stocks are accounted for, and reveal any inconsistencies or issues that
should be checked in the underlying analyses.

8

https://github.com/sofia-tsaf/catches
https://github.com/sofia-tsaf/effort
https://github.com/sofia-tsaf/TSAF

4 Development status and next steps

4.1 TSAF repositories

4.1.1 Current status

As of end of December 2021, the GitHub site https://github.com/sofia-tsaf

contains 12 TSAF repositories:

area31

area37

2021Area37Clams

2021Area37Coastal

2021Area37Cods

2021Area37Demersal

2021Area37Flounder

2021Area37Herring

2021Area37Other

2021Area37Shads

2021Area37Shrimps

2021Area37Squid

The status of all of these analyses is exploratory for development purposes, as
opposed to production analyses for a final SOFIA report.

The initial step in TSAF development focused on area31 and area37, which are
aggregated analyses where all stocks within an area share the same annual effort
series, as well as priors on historical and current stock status. These prototype
analyses proved valuable to test and extend the early TSAF design.

In the next step of TSAF development, the analysis of Area 37 was divided into
stock groups (clams, costal, cods, etc.), allowing stock groups to have different
effort series and priors.

The current TSAF development focuses on allowing full detailed control in the
analysis, where each species within a stock group can have different effort series
and priors. To manage these model settings, new R functions were developed called
addEffort and addDriors. Encapsulating these actions in functions, that are
defined and maintained outside the main scripts, also comes with the side benefit
of shortening and simplifying the scripts. These latest developments have used the
2021Area37Coastal analysis as a test case.

4.1.2 Next steps

Read from input data warehouse

Currently, the TSAF analyses read the initial catch and effort data from a local
data directory, specific to each analysis. This means that data are repeated between
analyses, especially the effort data. Furthermore, to update catch and effort data,

9

https://github.com/sofia-tsaf

one would have to modify a large number of TSAF repositories. The input data
warehouse offers a more efficient, traceable, and quality-controlled workflow.

Categorical status by stock and year

Currently, the TSAF analyses produce an output file called stock_timeseries.csv
with numerical B/BMSY and F/FMSY by stock and year. For the subsequent
analysis, it would be beneficial if the categorical stock status (underfished, fully
fished, overfished) by year is also included in this file. This improvement will require
modifications to the output.R script of all TSAF analyses.

Standardize and shorten scripts

The main difference between the TSAF analyses that have been developed so far
is the underlying catch and effort data. Other model input, such as priors, is also
specified in dedicated input files. The benefit of this design is that the analytical
scripts (data.R, model.R, output.R, and report.R) are almost identical between
different TSAF repositories.

As the number of TSAF repositories grows, it becomes more cumbersome to make
the same change across all analyses. A simple change, such as a minor improvement
in the format of a specific plot, may involve modifying one line in a particular script
across all TSAF repositories.

The recent creation of the TSAF package was an important step to provide a
single place to organize TSAF code that is shared between analyses. Moving
blocks of code from the R scripts into the TSAF package, as encapsulated and
documented functions, will be beneficial for the development and maintenance of
TSAF analyses.

A thorough research and review of the TSAF analyses is required to identify blocks
of code that can be moved to shared functions. The design and development of
these functions and maintenance of the TSAF package will be a good investment
to efficiently handle a large number of TSAF analyses.

Reference analysis

As the development of TSAF analyses continues, it might be practical to have
one reference analysis that demonstrates the latest features and recommended as
a template for creating a new TSAF analysis. Currently, the 2021Area37Coastal
analysis serves as the test case for new features and improvements, but a dedicated
reference analysis would be beneficial.

Managing output files

A significant challenge in TSAF is that each analysis takes considerable time to
run (>1 hr) and produces large output files (>100 MB). Every time a small update
is made to the scripts or underlying data, a new run is required and the output

10

files are likely to change. TSAF development so far has explored two approaches
to store the output files.

Approach 1. Initial development (e.g., area37) kept the output files outside of the
repository. Instead of uploading the output files along with the R scripts, output
files were uploaded as GitHub ‘release assets’. The advantage of this approach is
that the repository remains very light and easy to work with, and takes much less
space on the hard drive of a personal laptop.

Approach 2. Later development (e.g., 2021Area37Coastal) has the output files
stored inside the repository. The advantage of this approach is that it reduces the
need to manage tags and GitHub releases, and makes it slightly less likely to have
mismatching R scripts and output files.

Unfortunately, neither of the above approaches can guarantee a correct match
between the R scripts and the output files. In other words, when a change is made
to an R script and uploaded to the repository, it’s easy to forget or omit running
the entire analysis and uploading new output files.

A 3rd approach worth exploring would be not to upload output files to the GitHub
repository at all. Instead, the database server would run all analyses locally.
Specifically, a GitHub webhook could be developed, so that whenever a change
is uploaded to the GitHub repository, the database server pulls the changes, runs
the analysis and imports the results into the database. This would guarantee a
strong linkage between the TSAF repositories and the database.

Other improvements in TSAF repositories

In upcoming meetings, the TSAF development team will continue to use the
TSAF project board (Section 2.3) to discuss, prioritize, and track the above and
additional developments related to TSAF repositories.

4.2 Input data warehouse

4.2.1 Current status

The https://github.com/sofia-tsaf/catches repository currently contains the
following files with catch data:

cap_2021-10-17_193245.csv

cap_all_area37_2021-10-12_64848.csv

cap_flagged_2021-10-12_70055.csv

cap_flagged_area37_2021-10-12_63449.csv

The https://github.com/sofia-tsaf/effort repository has been created but
is still empty.

11

https://github.com/sofia-tsaf/catches
https://github.com/sofia-tsaf/effort

4.2.2 Next steps

The data in the catches repository data are ready for exploratory use, testing
the ability of R scripts to read catch data from the central warehouse instead of a
local data directory.

Data can be added to the effort repository in CSV format. Alternative structures
of the data will be evaluated, before deciding how to organize the effort data from
different areas and stocks.

For TSAF analyses of Tier 1 and 3, the data warehouse can incorporate the
underlying numerical and categorical data from official stock assessments and
expert elicitation. This could further increase the clarity and traceability of the
overall SOFIA analysis of stock status.

4.3 R package

4.3.1 Current status

Version 1.0.0 of the TSAF package was released on 10 Dec 2021. The package
help page that comes with TSAF lists the following functions, categorized by
functionality.

Prepare data:

addDriors add ‘driors’ (data and priors) column to stocks object
addEffort add effort column to catch data

Calculate:

calcCat stock status categories

Plot:

plotCat summary of stock status categories

The current status of the package is stable and fully documented, passing a strict
R CMD --as-cran quality check. It will not be submitted to be published on
CRAN, however, since it requires the sraplus package that does not fulfill the
strict criteria of CRAN packages.

4.3.2 Next steps

The development goal to ‘Standardize and shorten scripts’ (Section 4.1.2) involves
extending the TSAF package. Specific ideas for additional functions have not yet
been formulated.

12

4.4 Database

4.4.1 Current status

The database of TSAF results is implemented in MySQL. Its development is
organized in a GitHub repository:

https://github.com/sofia-tsaf/database

Database import and export is managed using Bash shell scripts, which are found
in the GitHub repository.

4.4.2 Next steps

Strong link between repositories and database

The link between TSAF repositories and the database of results (Figure 1) is
essential for traceability and the fundamental purpose of TSAF. The very basis of
the TSAF design is that the results found in the database should match exactly
the results produced by the TSAF repositories.

One database script under development loops through the list of repositories and
pulls down the current_status.csv file to ingest to the database.

The design and development of this linkage is still ongoing. It might be beneficial
to maintain a list of TSAF repositories whose results should be imported into the
database. Several repositories on https://github.com/sofia-tsaf are not TSAF
analyses producing results for the database, e.g., software development reposito-
ries, input data warehouse repositories, and exploratory or reference analyses. The
database should import results from all relevant TSAF repositories, while omitting
other repositories.

Database server managing TSAF output files

One design possibility is to have a dedicated TSAF database server as the main
platform to run TSAF analyses and manage output files, in addition to importing
the results into the database.

The development goal ‘Managing output files’ (Section 4.1.2) elaborates on this
possible approach, which could involve a GitHub webhook to establish a reliable
pipeline of information from TSAF repositories to the database.

13

https://github.com/sofia-tsaf/database
https://github.com/sofia-tsaf

5 Acknowledgements

Working with Rishi Sharma and Nicole Tursich on this project is a privilege and
joy. Our domains of expertise complement each other, and we share a common
vision and enthusiasm to enhance the FAO infrastructure and analytical workflows
for estimating the state of the world’s fisheries. I would like to acknowledge Colin
Millar for our collaboration in creating TAF (Magnusson and Millar 2021), which
has served as an inspiration and basis for the TSAF design. Last but not least,
I am grateful to Pedro Barros and colleagues at FAO for their guidance and vote
of confidence for this technical development project.

6 References

FAO (Food and Agriculture Organization of the United Nations). 2020. The State of
World Fisheries and Aquaculture 2020: Sustainability in action. Rome. 206 pp.
https://doi.org/10.4060/ca9229en

ICES (International Council for the Exploration of the Sea). 2021. Transparent
Assessment Framework.
https://taf.ices.dk

Magnusson, A. and C. Millar. 2021. TAF: Functions to Support the ICES Transparent
Assessment Framework. R package version 4.0.0.
https://cran.r-project.org/package=TAF

Ovando, D. 2019. sraplus: Run sraplus Assessments. R package version 3.7.3.
https://github.com/DanOvando/sraplus

Sharma, R. and A. Magnusson. 2021. TSAF: Tools to Work with SOFIA-TSAF
Analyses. R package version 1.0.0.
https://github.com/sofia-tsaf/TSAF

14

https://doi.org/10.4060/ca9229en
https://taf.ices.dk
https://cran.r-project.org/package=TAF
https://github.com/DanOvando/sraplus
https://github.com/sofia-tsaf/TSAF

A Arni’s contributions in 2021

TSAF design

The work on this project is divided been design and development. The design part
takes place largely during online technical meetings of the TSAF development
team, and is the product of dynamic teamwork and discussions. As the TSAF
design borrows both ideas and technical components from TAF (Magnusson and
Millar 2021), Arni has served in a lead role in the design of many aspects of
TSAF, especially the structure of TSAF repositories, input data warehouse, and
the R package.

TSAF repository development

On the development front, Arni started by creating the area37 repository,
demonstrating how a TSAF analysis can be efficiently divided into four scripts
(data.R, model.R, output.R, and report.R) and taking advantage of the existing
TAF package to support reproducibility. He then made incremental improvements
to the area37 analysis, giving objects and files short and generic names that can
be used consistently between different SOFIA analyses. The area37 repository
served as a template for all later TSAF repositories.

Teaching and documenting

Since the other development team members were rather new to using GitHub
repositories and TAF workflows, Arni has dedicated project time to teaching and
documenting how those technologies are used in TSAF. He also analyzed the
extent of package dependencies of the sraplus package, which is especially relevant
for the reproducibility aspect of TSAF analyses.

Stock-specific analysis

Later development focus of Arni’s work was the generalization of TSAF
analyses, to allow effort data and priors to be either stock-specific or shared
across stocks. This improvement was first implemented as a general structure
for the input data files and a revised block of code in the data.R script of
analysis 2021Area37Coastal. To select which analytical option to use, a flag
stocks.combined in the data script is set to TRUE or FALSE, with corresponding
if-constructs added to the code. These if-constructs were later replaced with a
cleaner solution, as encapsulated functions in a new dedicated TSAF package.

R package

The new functionality of stock-specific analysis led Arni to develop a new R
package called TSAF that is now operational. Acting as a single place of analytical
methods used in all TSAF analyses, greatly improving the ability to manage and
maintain the large number of TSAF analyses behind SOFIA.

15

Contributions to project management

Arni proposed and created the project board used to track TSAF development
progress, along with a discussion board, milestones, and issue tracker. Finally, he
wrote the current report, which consolidates the progress made so far, conveys a
design manifesto, documents existing features, and serves as a foundation for the
next steps and team discussions on TSAF development.

Links to deliverables

- area37 analysis

- sraplus list of dependencies

- Project board

- 2021Area37Coastal analysis

- TSAF package

- This current report

16

https://github.com/sofia-tsaf/area37
https://github.com/sofia-tsaf/doc/blob/main/sraplus_dependencies.md
https://github.com/sofia-tsaf/project/projects/1
https://github.com/sofia-tsaf/2021Area37Coastal
https://github.com/sofia-tsaf/TSAF
https://arni-magnusson.github.io/pdf/2021-tsaf.pdf

	Executive summary
	Introduction
	Background
	Objectives
	Project management

	Design
	TSAF repositories
	Input data warehouse
	R package
	Database

	Development status and next steps
	TSAF repositories
	Input data warehouse
	R package
	Database

	Acknowledgements
	References
	Arni's contributions in 2021

