

S-Plus workshop

7-9 and 14-16 January students.washington.edu/arnima/s

Statistical software

User-friendly Excel, SPSS, Statistica

Limited statistical and graphical functionality

Can't automate tasks

Fast and programmable

Gauss, Maple, Mathematica, Matlab, S, SAS

Visual Basic

Small user group

Limited statistical functionality

Not theExpensivefastestbut not better

Similar speed but limited statistical and graphical functionality

Function optimization ADMB **Sheer speed** C++, Fortran

Limited statistical and graphical functionality

What S offers

Large collection of tools for statistical analysis, constantly updated by a large user community, including leading authorities in statistical fields

Graphics for exploratory analysis and publications

Language for expressing statistical models, object oriented and extensible by users

The S family

- **S** Programming language, first version 1976, now 4.0 Maintained by John Chambers et al., AT&T Bell Laboratories
- S-Plus Statistical software that uses S, first version in 1988, now 6.1 Maintained by Insightful, academic price \$115 (1 yr trial is free) Choice between GUI and command line interface
- R Statistical software that uses S, first version in 2000, now 1.6.1
 Maintained by R Development Team, free download for anyone
 Command line interface

Syllabus

Tue 7	Introduction Import data, summarize, regression, plots, export graphs
Wed 8	Basic statistics Descriptive statistics, significance tests, linear models
Thu 9	Linear models Anova, LM, GLM, loess
Tue 14	Graphics Types, multipanel, export graphs
Wed 15	Data manipulation Data objects, describe, extract, sort, manipulate
Thu 16	Programming Functions, import/export, project management, packages

Today: Introduction

- 1 Import data
- 2 Summarize data
- 3 Fit regression model
- 4 Graph model fit to data
- 5 Export graph to Word

GUI - Import data

Open Excel File - Open - mammals.xls File - Save as - Save as type [CSV] Close Excel

Open S-Plus File - Import data - From file - Browse [mammals.csv] Close data editor Unselect mammals by clicking on the white space

GUI - Summarize

Statistics - Data summaries - Summary statistics Data set [mammals] - Variables [body and brain] Close report window

Graph - 2D plot - Linear scatter plot Data set [mammals] - x columns [body] - y columns [brain]

Graph - 2D plot - Log log scatter plot - Graph sheet [GS1] Data set [mammals] - x columns [body] - y columns [brain]

GUI - Fit model

Statistics - Regression - Linear Data set [mammals] Create formula - Transformation Select both body and brain - Log - Add Select log(brain) - Response Select log(body) - Main effect Plots - Residuals vs. fit - Untick the "include smooth" option Switch to the report window Close the report window

GUI - Show fitted line

Graph - 2D plot - Log log fit power - Graph sheet [GS1] Data set [mammals] - x columns [body] - y columns [brain]

GUI - Export graph

Switch to the graph window, Edit - Copy Open Word and paste special as picture, to keep the Word file small Close Word

First encounter with objects in S

ls()

	mammals
	mammals.lm
	x
1+8	ls()
x <- 1+8	rm(x)
x	lm
sqrt(x)	sqrt
	sqrt(2)
	lm()
	?sqrt
	?lm
	args(lm)

Import data

Summarize

summary(mammals)

plot(mammals\$body, mammals\$brain)

plot(log(mammals\$body), log(mammals\$brain))

Fit model

mammals.lm <- lm(log(brain)~log(body), data=mammals)</pre>

summary(mammals.lm)

Show fitted line

abline(mammals.lm)

Export graph

Switch to one of the graphs, Edit - Copy (R: File - Copy - Metafile) Open Word and paste special as picture Close Word

