
S-Plus workshop: Miscellanea Arni Magnusson, 16 Jan 2003

Programming

1 Functions

Session 1 as a script
1 Import data
mammals <- read.table("c:/projects/day1/mammals.csv ", header=T, sep=",", row.names=1)

2 Summarize
summary(mammals)
plot(mammals$body, mammals$brain)
plot(log(mammals$body), log(mammals$brain))

3 Fit model
mammals.lm <- lm(log(brain)~log(body), data=mammals)
summary(mammals.lm)

4 Show fitted line
abline(mammals.lm)

Session 1 as a function
session1 <- function(filename.csv)

Function: session1 #

Purpose: Import data, fit a linear regression model, and plot the results #

Args: filename.csv is a comma-separated fil e with header and 3 cols: #
species,body,brain #
Animal name,1.0,2.0 #
... #

Returns: Summary of the regression results (ob ject of class summary.lm) #

{
 mammals <- read.table(filename.csv, header=TRUE, sep=",", row.names=1)

 mammals.lm <- lm(log(brain)~log(body), data=mamma ls)
 plot(log(mammals)$body, log(mammals$brain))
 abline(mammals.lm)
 output <- summary(mammals.lm)

 return(output)
}

Use functions, not scripts

Actually, what we did in session 1 is not worthy of a function or a script, in practice we just type
lm() and plot() when we need them. It was a worthwhile session to learn things - every time I
learn something new in R, I take notes and store them in a document with other R notes.

Our cv() function from session 2 is almost worth keeping, but in practice we just type
sd(x)/mean(x). In a typical project, we write functions like getDistances(), plotAreas(),
tableMonthly(), readData(), and writeSummary(). If your function is >40 lines, you may want to
split the task into smaller subtasks: tableMonthly() calls getDay() to process the raw data.

S-Plus workshop: Miscellanea Arni Magnusson, 16 Jan 2003

Why functions are better than scripts:
 - easy to debug
 - easy to change
 - more likely to be reused in another project
 - focus on each task, often leading to better solutions
 - tidy, workspace doesn't fill with temporary objects
 - safe, objects are less likely to be accidentally overwritten
 - hone your programming skills, for any language

If you have a script, start by converting it to a function() with no args, return()ing some meaningful
output at the end, often a list.

2 Hints and tips

Unusual data entries
 # Identify with:
NA # is.na(x)
Inf # is.inf(x)
NULL # is.null(x)
numeric(0) # length(x)==0
"" # x==""
0 # x==0
See also ?is.nan

Symbols I don’t use to create objects
 # Use instead:
= # <-
_ # <-
<<- # assign

Impractical object names
T, F # fine in command line, but not in source cod e (functions or scripts)

Source code format
; # lazy line seperator, useful in command li ne but less useful in source code
{ # braces around clauses (function/for/while /if/else), in separate lines
spaces # spaces help reading, especially when sepa rating top-level args

3 Import/export data

Import
Read table in CSV format
x <- read.table("c:/temp/mammals.csv", header=T, se p=",")

Read data in irregular text format (e.g. 2 numbers in first line, 400 numbers in second line, ...)
y <- scan("c:/temp/admb.dat", comment.char="#", q uiet=TRUE)

Read one line of data
y11 <- scan("c:/temp/admb.dat", skip=10, nlines=1, quiet=TRUE)
y26 <- scan("c:/temp/admb.dat", skip=25, nlines=1, quiet=TRUE)

Export
Write table in CSV format

S-Plus workshop: Miscellanea Arni Magnusson, 16 Jan 2003

write.table(cabbages, "c:/temp/cabbages.csv", quote =F, sep=",", row.names=F)

Write vector in one line
write(rnorm(10), "c:/temp/admb.dat", ncolumns=10, a ppend=T)

4 Project management

What’s in a project?
A project in S contains similar things as an elaborate worksheet would in Excel:

- Data Vectors and data frames in S

- Results from analysis Fitted model objects in S

- Plots Simple plots like plot(x,y) are easy to recreate, so
 we don’t bother storing those. More complicated plots
 can be stored as functions without arguments, a.k.a.
 “scripts”, or with default arguments like this:

fig1 <- function(x=mammals$body, y=mammals$brain)
{
 plot(log(x,10), log(y,10), xlim=c(-2.5,4.5), ylim =c(-1.5,4.5),
 xlab="Body weight (kg)", ylab="Brain weight (g)", axes=F, pch=16)
 axis(1, at=seq(-2,4,1), labels=10^seq(-2,4,1))
 axis(2, at=seq(-1,4,1), labels=10^seq(-1,4,1))
 box()
}

Option 1 - Get everything out of S
If you don’t use S on a regular basis, this can be a reasonable choice

Export: Data as .csv (or keep them in Excel, Access, ...)
 Analysis as .ssc/.r (showing what was done)
 Results as .txt (or import them into Word, Powerpoint, ...)
 Graphs as .eps, .png, .ssc/.r (or graph the data with some other program)

Then clear the workspace with rm(list=ls())

For later use, the source code (.ssc/.r) can be pasted into the command line, or sucked up with
the source() function.

Option 2 - GUI management

S-Plus

Options - General settings - Startup - Prompt for project folder [v]
Quit S-Plus and start again.
S-Plus now allows the user to select the working directory for that session. It will be saved in the
state you leave it in.

To switch between projects, remove garbage objects, quit S-Plus and start again, choosing
another working directory.

R

When finished working, remove garbage objects and click File - Save workspace

S-Plus workshop: Miscellanea Arni Magnusson, 16 Jan 2003

Clear workspace with rm(list=ls()) # leaves .First and .Last intact
Now quit or load another workspace to switch to another project

It’s a good habit to save projects and clear the default workspace regularly (apart from .First and
.Last), to avoid objects with nondescriptive names like x and temp from accumulating.
This way R will start up in <1 sec, ready to start a new project or load an existing one.

#R: Option 3 - Implement functions
.path <- function(project)

Function: .path #

Purpose: Return full path of project workspace #

Args: project is a string containing projec t keyword #

Returns: String containing full path of projec t workspace path #

{
 path <- switch(project,
 gmt="c:/programs/gmt/interface/.rd ata",
 admb="c:/programs/admb/interface/. rdata",
 sable="c:/projects/sablefish/analy sis/.rdata",
 thesis="c:/cwt/thesis/analysis/.rd ata")
 return(path)
}

.load <- function(project)

Function: .load #

Purpose: Load objects from project workspace f ile into main workspace #

Args: project is a project keyword, with or without quotes #

Notes: Project keywords are defined in .path and can be updated there #

Returns: Invisible vector of object names that were loaded #

{
 load(.path(as.character(substitute(project))), .G lobalEnv)
}

.save <- function(project)

Function: .save #

Purpose: Save objects in main workspace in pro ject workspace file #

Args: project is a project keyword, with or without quotes #

Notes: Project keywords are defined in .path and can be updated there #

Returns: Null, but workspace file is written #

{
 save(list=ls(1), file=.path(as.character(substitu te(project))))
}

S-Plus workshop: Miscellanea Arni Magnusson, 16 Jan 2003

5 Functions categorized by output

In the handouts, I have tried to categorize functions by context. Another perspective is to
categorize them by their output:

Those that perform, but return NULL or invisible
rm, plot, write.table

Return an object we'd just like to see
ls, args, summary, t.test, anova

Return an object we'd like to pass to another function
log, residuals, I

Return an object we might want to store
c, data.frame, aov, read.table

6 Packages

Websites
#S: http://lib.stat.cmu.edu/S/
#R: http://cran.us.r-project.org/web/packages/

Functions
library()
#R: CRAN.packages()
#R: installed.packages()
#R: install.packages("mypackage")
#R: remove.packages("mypackage")
#R: update.packages()
#R: help(package="mypackage")

#R: Recommended R packages

Distributed with R
lattice Multivariate plotting
MASS Datasets and negbin GLM support
mgcv Simon Wood's implementation of GAM
nlme Mixed effects models

Available with install.packages()
bhat Nonlinear optimization
car Applied regression
coda MCMC diagnostics
Hmisc Harrell's toolkit
rmeta Meta analysis
RODBC ODBC connectivity
spatial Spatial statistics (kriging and friends)

7 New functions

Data manipulation is.na
 is.inf
 is.null
 is.nan

S-Plus workshop: Miscellanea Arni Magnusson, 16 Jan 2003

 assign
 scan
 write.table
 write
Import/export scan
 write.table
 write
 #R: load
 #R: save
 #R: CRAN.packages
 #R: installed.packages
 #R: remove.packages
 #R: update.packages
Programming switch
 substitute
 invisible

