
S-Plus workshop
7-9 and 14-16 January

students.washington.edu/arnima/s

Arni Magnusson

16 January 2003

Syllabus

Tue 7 Introduction
Import data, summarize, regression, plots, export graphs

Wed 8 Basic statistics
Descriptive statistics, significance tests, linear models

Thu 9 Linear models
Anova, LM, GLM, loess

Tue 14 Graphics
Types, multipanel, export graphs

Wed 15 Data manipulation
Data objects, describe, extract, sort, manipulate

Thu 16 Programming
Functions, import/export, project management, packages

Arni Magnusson

16 January 2003

Today: Programming

1 Functions
scripts, functions, hints and tips

2 Import/export data
read.table, scan, write.table, write

3 Project management
GUI, command line

4 Libraries
websites, overview

Arni Magnusson

16 January 2003

Session 1 as a script

1 Import data
mammals <- read.table("c:/projects/day1/mammals.csv", header=T, sep=",", row.names=1)

2 Summarize
summary(mammals)
plot(mammals$body, mammals$brain)
plot(log(mammals$body), log(mammals$brain))

3 Fit model
mammals.lm <- lm(log(brain)~log(body), data=mammals)
summary(mammals.lm)

4 Show fitted line
abline(mammals.lm)

Arni Magnusson

16 January 2003

Session 1 as a function

session1 <- function(filename.csv)
##
#
Function: session1
#
Purpose: Import data, fit a linear regression model, and plot the results
#
Args: filename.csv is a comma-separated file with header and 3 cols:
species,body,brain
Animal name,1.0,2.0
...
#
Returns: Summary of the regression results (object of class summary.lm)
#
##
{

mammals <- read.table(filename.csv, header=TRUE, sep=",", row.names=1)

mammals.lm <- lm(log(brain)~log(body), data=mammals)
plot(log(mammals)$body, log(mammals$brain))
abline(mammals.lm)
output <- summary(mammals.lm)

return(output)
}

Arni Magnusson

16 January 2003

Use functions, not scripts

Actually, what we did in session 1 is not worthy of a function or a script,
in practice we just type lm() and plot() when we need them

It was a worthwhile session to learn things - every time I learn
something new in R, I take notes and store them in a document with
other R notes

Our cv() function from session 2 is almost worth keeping, but in practice
we just type sd(x)/mean(x)

In a typical project, we write functions like getDistances(), plotAreas(),
tableMonthly(), readData(), and writeSummary()

If your function is >40 lines, you may want to split the task into smaller
subtasks: tableMonthly() calls getDay() to process the raw data

Arni Magnusson

16 January 2003

Use functions, not scripts

Why functions are better than scripts:

- easy to debug

- easy to change

- more likely to be reused in another project

- focus on each task, often leading to better solutions

- tidy, workspace doesn't fill with temporary objects

- safe, objects are less likely to be accidentally overwritten

- hone your programming skills, for any language

If you have a script, start by converting it to a function() with no args,
return()ing some meaningful output at the end, often a list

Arni Magnusson

16 January 2003

Hints and tips

Unusual data entries
NA Inf NULL numeric(0) ""
identify with is.na(x) is.inf(x) is.null(x) length(x)==0 x==""

Symbols I don’t use to create objects
= _ <<-
use instead: <- assign

Impractical object names
T F
fine in command line, but not in source code (functions or scripts)

Source code format
; # lazy line seperator, useful in command line but less useful in source code

{ # braces around clauses (function/for/while/if/else), in separate lines
spaces # spaces help reading, especially when separating top-level arguments

Arni Magnusson

16 January 2003

Import data

Read table in CSV format
x <- read.table("c:/temp/mammals.csv", header=T, sep=",")

Read data in irregular text format
y <- scan("c:/temp/admb.dat", comment.char="#", quiet=T)

Read one line of data
y1 <- scan("c:/temp/admb.dat", skip=10, nlines=1, quiet=T)
y2 <- scan("c:/temp/admb.dat", skip=25, nlines=1, quiet=T)

Arni Magnusson

16 January 2003

Export data

Write table in CSV format
write.table(cabbages, "c:/temp/cabbages.csv", quote=F, sep=",",

row.names=F)

Write vector in one line
write(rnorm(10), "c:/temp/admb.dat", ncolumns=10, append=T)

Arni Magnusson

16 January 2003

Project management

Organizing and archiving our work

We want to store the project so that:

- other people can reproduce the results (definition of science)

- we can revisit the project, to look up or change something

- we can reuse parts of it in another project

Arni Magnusson

16 January 2003

What’s in a project?

A project in S contains similar things as an elaborate worksheet would
in Excel:

- Data Vectors and data frames in S

- Results from analysis Vectors, data frames, and fitted model objects in S

- Plots Simple plots like plot(x,y) are easy to recreate, so we
don’t bother storing those. More complicated plots
can be stored as functions:

fig1 <- function(x=mammals$body, y=mammals$brain)
{

plot(log(x,10), log(y,10), xlim=c(-2.5,4.5), ylim=c(-1.5,4.5),
xlab="Body weight (kg)", ylab="Brain weight (g)", axes=F, pch=16)

axis(1, at=seq(-2,4,1), labels=10^seq(-2,4,1))
axis(2, at=seq(-1,4,1), labels=10^seq(-1,4,1))
box()

}

Arni Magnusson

16 January 2003

Option 1: Get everything out of S

If you don’t use S on a regular basis, this can be a reasonable choice

Export: Data as .csv (or keep them in Excel, Access, ...)

Analysis as .ssc/.r (showing what was done)

Results as .txt (or import them into Word, Powerpoint, ...)

Graphs as .eps, .png, .ssc/.r (or graph the data with some other program)

Then clear the workspace with rm(list=ls())

For later use, the source code (.ssc/.r) can be pasted into the command
line, or sucked up with the source() function.

Arni Magnusson

16 January 2003

Option 2: GUI management

S-Plus
Options - General settings - Startup - Prompt for project folder

Quit S-Plus and start again.

S-Plus now allows the user to select the working directory for that
session. It will be saved in the state you leave it in.

To switch between projects, remove garbage objects, quit S-Plus
and start again, choosing another working directory.

Arni Magnusson

16 January 2003

Option 2: GUI management

R
When finished working, remove garbage objects and click
File - Save workspace

Clear workspace with rm(list=ls()) # leaves .First and .Last intact

Now quit or load another workspace to switch to another project

It’s a good habit to save projects and clear the default workspace
regularly (apart from .First and .Last), to avoid objects with
nondescriptive names like x and temp from accumulating.

This way R will start up in <1 sec, ready to start a new project or load
an existing one.

Arni Magnusson

16 January 2003

#R: .path, load, .save

R
I have written the functions .path(), .load(), and .save() to manage my
projects in R.

The approach is the same as GUI management in R, except instead
of browsing through file directories I use keywords.

Example, adding object x to “sable” project: rm(list=ls())
.load(sable)
x <- 9
.save(sable)
rm(list=ls())
q()

Arni Magnusson

16 January 2003

#R: .path()

.path <- function(project)
##
#
Function: .path
#
Purpose: Return full path of project workspace
#
Args: project is a string containing project keyword
#
Returns: String containing full path of project workspace path
#
##
{

path <- switch(project,
gmt="c:/programs/gmt/interface/.rdata",
admb="c:/programs/admb/interface/.rdata",
sable="c:/projects/sablefish/analysis/.rdata",
thesis="c:/cwt/thesis/analysis/.rdata")

return(path)
}

Arni Magnusson

16 January 2003

#R: .load()

.load <- function(project)
##
#
Function: .load
#
Purpose: Load objects from project workspace file into main workspace
#
Args: project is a project keyword, with or without quotes
#
Notes: Project keywords are defined in .path and can be updated there
#
Returns: Invisible vector of object names that were loaded
#
##
{

load(.path(as.character(substitute(project))), .GlobalEnv)
}

Arni Magnusson

16 January 2003

#R: .save()

.save <- function(project)
##
#
Function: .save
#
Purpose: Save objects in main workspace in project workspace file
#
Args: project is a project keyword, with or without quotes
#
Notes: Project keywords are defined in .path and can be updated there
#
Returns: Null, but workspace file is written
#
##
{

save(list=ls(1), file=.path(as.character(substitute(project))))
}

Arni Magnusson

16 January 2003

Function output

In the handouts, I have tried to categorize functions by context

Another perspective is to categorize them by their output:

Those that perform, but return NULL or invisible:
rm, plot, write.table

Return an object we'd just like to see:
ls, args, summary, t.test, anova

Return an object we'd like to pass to another function:
log, residuals, I

Return an object we might want to store:
c, data.frame, aov, read.table

Arni Magnusson

16 January 2003

Packages

library() # show installed packages

S-Plus http://lib.stat.cmu.edu/S/

R http://cran.us.r-project.org/web/packages/

CRAN.packages()
installed.packages()
install.packages("mypackage")
remove.packages("mypackage")
update.packages()
help(package="mypackage")

Arni Magnusson

16 January 2003

Recommended R packages

lattice Multivariate plotting
MASS Datasets and negbin GLM support
mgcv Simon Wood's implementation of GAM
nlme Mixed effects models

bhat Nonlinear optimization
car Applied regression
coda MCMC diagnostics
Hmisc Harrell's toolkit
rmeta Meta analysis
RODBC ODBC connectivity
spatial Spatial statistics (kriging and friends)

install.packages("x")

Distributed
with R

