
Overview over what was done in the R course after lunch November 9 when the theme was how to

get data from the databases at the institute.

A large number of packages exist in R to help in interfacing

 databases. Three of these packages, DBI, ROracle and ROracleUI have

 been installed at MRI, and are automatically attached in computers set

 up at the MRI.

Those packages contain a large number of functions but for most of the

 users the functions sql, tables, views and desc. Those

 functions are from the package ROracleUI and are relatively high

level functions that use function from DBI and ROracle. Only

 interface with the Oracle database at MRI was discussed so the

 lower level functions were not discussed at all.

The function tables lists all available Oracle tables. Typical use

 would be

x <- tables()

or

x <- tables(owner="fiskar")

 names(x)

[1] "owner" "table" "space" "rows" "analyzed"

The column rows shows the number of records in the table. In some few

 tables the value of rows is NA (should not be). The number of

 records times number of columns is an indicator of the size of the

 table. The number of columns in a table can be found by the command

 desc

which is comparable to the desc command in sql.

x <- desc("fiskar.lengdir")

x

 name Sclass type len precision scale isVarLength nullOK

1 synis_id integer number 4 6 0 FALSE TRUE

2 tegund integer number 4 4 0 FALSE TRUE

3 lengd double number 8 6 2 FALSE TRUE

4 fjoldi integer number 4 5 0 FALSE TRUE

5 kyn integer number 4 1 0 FALSE TRUE

6 kynthroski integer number 4 2 0 FALSE TRUE

7 sbt character date 64 0 0 TRUE TRUE

8 sbn character varchar2 15 0 0 TRUE TRUE

9 snt character date 64 0 0 TRUE TRUE

10 snn character varchar2 15 0 0 TRUE TRUE

 7740714 rows on 07-FEB-07

With the function sql data can be obtained from the Oracle data base by an sql command. Requires

an Oracle client to be running on the computer. An example where the number measured and

number counted of saithe (tegund=3) in the cruise “B10-92” is.

x <- sql("select a.synis_id,fj_talid,fj_maelt from fiskar.stodvar a, fiskar.numer b where a.synis_id =
b.synis_id and tegund=3 and leidangur='B10-92'")
names(x)
[1] "synis.id" "fj.talid" "fj.maelt"

synis_id is the index that links the information in the station table (fiskar.stodvar, fiskar.kvarnir,

fiskar.lengdir etc. The same sql command can be set up somewhat differently and more clearly as

 x <- sql("select synis_id,fj_talid,fj_maelt from fiskar.numer b where tegund=3 and b.synis_id in
(select synis_id from fiskar.stodvar where leidangur='B10-92')")

The command in in sql is comparable to the command %in% in R. This kind of nested sql

commands can be very useful for example if taking data from the stomach content data base when

the number of layers become 3 instead of 2 . (fiskar.stodvar links to faeda.f_fiskar by the index

synis_id and faeda.f_fiskar to the table faeda.f_hopar by the index flokk_id.)

Number of

library(fjolst)
args(lesa.stodvar)
names(stodvar)
tmp <- lesa.stodvar(leidangur="B10-92")
nrow(tmp) # Number of stations
[1] 146

table(tmp$leidangur) # surveys only one here
names(tmp) # names of the columns in tmp
Oracle # Variable describing the default behaviour Oracle or not.

tmp <- lesa.stodvar(leidangur="B10-92",oracle=F) #geting data from dataframe
x <- stodvar[stodvar$leidangur == "B10-92",] #same the lesa.stodvar with oracle=F
x <- stodvar[stodvar$leidangur %in% "B10-92",]# same as before %in% instead of ==
%in% is the same as in in sql and is very
nrow(x)
nrow(tmp)
saile <- lesa.lengdir(tmp$synis.id,3) # length distribution of saithe in B10-92
saikv <- lesa.kvarnir(tmp$synis.id,3,col.names=c("slaegt","oslaegt")) # otholith samples of saithe
in B10-92. The columns slaegt and oslaegt added to the std synis_id, lengd, aldur
names(saikv)
[1] "synis.id" "lengd" "aldur" "slaegt" "oslaegt"

sainu <- lesa.numer(tmp$synis.id,3) #
 names(sainu)

[1] "synis.id" "ar" "veidarfaeri" "tegund" "fj.talid"
[6] "fj.maelt" "afli" "vigt.synis"

columns ar and veidarfaeri are really from the station file.
hadnu <- lesa.numer(tmp$synis.id,2)
names(hadnu)
hadnu$totnumber <- hadnu$fj.maelt+hadnu$fj.talid # Total number of haddock
tmp <- merge(tmp,hadnu[,c("synis.id","totnumber")]) # link station file to number file.
tmp[c("synis.id","totnumber")]
nrow(tmp)
[1] 100

#Only 100 of 146 stations have haddock and only those are included. To get all 146 stations
requires outer join i.e merge with all = T as shown below.

tmp <- lesa.stodvar(leidangur="B10-92")
tmp <- merge(tmp,hadnu[,c("synis.id","totnumber")],all=T)

tmp[c("synis.id","totnumber")]
tmp$totnumber[is.na(tmp$totnumber)] <- 0 # No haddock record mean 0 haddock at the station not
 NA. The home made function join would be better.
tmp <- join(tmp,hadnu[,c(“synis.id”,”totnumber”),”synis.id”,set=0) # has the parameter set
the function fjperstod calculates number of given species at each station doing what has been #
described before.
tmp <- fjperstod(tmp,teg=2,name="ysa.stk")
names(tmp)
fjperstod
Stomach samples
names(ffiskar) # the table f_fiskar i.e predator info
Synaflokkur 35 is autumn survey
tmp <- stodvar[stodvar$synaflokkur %in% 35,]
table(tmp$ar)
Greenland halibut stomachs.
grlstom <- ffiskar[ffiskar$synis.id %in% tmp$synis.id & ffiskar$ranfiskur==22,]
nrow(grlstom)
names(grlstom)
get the preyinfo see how %in% is used.
grlf <- fhopar[fhopar$flokk.id %in% grlstom$flokk.id,]
names(fhopar)
names(ffiskar)
names(grlf)
Sum the total amount by prey (faeduhopur)

x <- apply.shrink(grlf$thyngd,grlf$faeduhopur,sum,names=c("faeduhopur","amount"))
x
names(x)
#Take 10 random numbers between 1 and 20. use to demonstrate order and sort.
x2 <- sample(1:20)[1:10]
x2
Same without replacement
x2 <- sample(1:20,replace=F)[1:10]
x2
sort(x2)
args(sort)
sort(x2,T)
order(x2)
args(order)
names(x)
look at x when the records are ordered from lowest to highest prey abundanc.
x[order(x$amount),]
Order from highest to lowest.
x[order(x$amount),decreasing=T,]
x[order(x$amount,decreasing=T),]
ls() #list what is in the directory
names(grlf)
Start geting the most common prey for each predator length group. Start by linking predator
length to prey info.
grlf <- join(grlf,grlstom[,c("lengd","flokk.id")],"flokk.id")
names(grlf)
sum by length or predator and food item.

x <-
apply.shrink(grlf$thyngd,list(grlf$faeduhopur,grlf$lengd),sum,names=c("faeduhopur","lengd","am
ount"))
Too many length groups might want to look at 10cm length groups.
x <-
apply.shrink(grlf$thyngd,list(grlf$faeduhopur,cut(grlf$lengd,seq(10,120,by=10))),sum,names=c("fa
eduhopur","lenfl","amount"))
Demonstrate how the commands seq and cut work.
seq(10,120,by=10)
cut(1:10,c(0,5,9))
x2 <- cut(1:10,c(0,5,9))
x2
as.numeric(x2)
x2 <- cut(1:10,c(0.1,5.1,9.1))
x2
as.numeric(x2)
x <-
apply.shrink(grlf$thyngd,list(grlf$faeduhopur,cut(grlf$lengd,seq(10,120,by=10))),sum,names=c("fa
eduhopur","lenfl","amount"))
x[1:10,]
x$lenfl <- as.numeric(x$lenfl)
i <- x$lenfl==5
x[i,]
Show and example of work from the package Logbooks that contains all logbook information ,
#one file for each gear except bottom trawl where there are three files botnv1, botnv2 and botnv3
#split according to period. Botnv1 1973-1990, botnv2 1991-1996 and botnv3 since 1997.
All files have information about position, time, effort and catch of most important species.
the column visir is the unique index connecting the logbook data files similar to synis_id in the
fiskar database.
library(Logbooks)
names(lina)
names(handf)
table(handf$ar)
names(flotv)
names(botnv1)
Show how to add information about a species (hlyri) that does not exist in the dataframe for
#longlines.
desc("afli.afli")
 # name Sclass type len precision scale isVarLength nullOK

#1 visir double number 8 38 127 FALSE FALSE

#2 sokntegund integer number 4 3 0 FALSE TRUE

#3 tegund integer number 4 5 0 FALSE FALSE

#4 afli integer number 4 7 0 FALSE TRUE

#5 medalthyngd_gr integer number 4 6 0 FALSE TRUE

8390782 rows on 19-JAN-05

afli.afli is the table containing all the information about catch in the logbooks.
#select all records for species 13 they are not that many.
x <- sql("select * from afli.afli where tegund=13")
names(x)
[1] "visir" "sokntegund" "tegund" "afli"

[5] "medalthyngd.gr"

find("x")
#[1] ".GlobalEnv"
 x only found here in the place where we are writing.
join information abut hlyri to the longline data.
lina <- join(lina,x[,c("visir","afli")],"visir")
names(lina)
names(lina)[36] <- "hlyri" # the name of this column was afli that is not very descriptive.
find("lina")
#[1] ".GlobalEnv" "package:Logbooks"

we used the name lina again so we have this name now in 2 places. Try to avoid this kind
of situation as it can lea to confusing results.

savehistory() # save all commands in .Rhistory

Some older material about the same thing.

Notes on the Marine reasearch Institute databases and how to
access them with R, Splus and sql.

What here follows is referred to the fish measurement database but the main points

should be applicable to other databases at the institute. The material is not

comprehensive, mostly limited by the authors knowledge. All colum names are in

Icelandic but appendix A has an English translation of some names. Many of MRI

databases are described on the internet under www.hafro.is/maps/hafrogogn2.map

In this description reference is often made to stoðtöflur (support tables). These are

small tables including meaning of things like species number (orri.fisktegundir),

maturity stages (fiskar.kynthroski) , gearcode (orri.veidarfaeri), name and number of

ships (orri.skipaskrá) and sampling type (fiskar.synaflokkar) etc.

The databases at the MRI are all what is called "relational databases". Then different

tables are related an index and the relation must always be one to many or one to 1.

The simple example shown in figure 1, taken out of the MRI measurement database

serves as an example. The figure shows two tables fiskar.stodvar and fiskar.lengdir

The first table includes information on each station and the second information on the

length measurements at each station. The column connecting those two is called

"synis_id" (means sample_id). Of course there is only one station connected to each

length measurment but there can be many length measurements associated with each

station so the relation is one to many. So how do we select from these tables with

sql.

First sql is started by the command sqlplus /. (another option is esc-X-sqlplus in

emacs). In sql the column names of a table can be found by the command decribe for

example if describe fiskar.stodvar. The answer to this question is quite commonly

Object does not exist which either means that the table does not exist or the user does

not have access to the table. The latter problem is quite common and can lead to

strange error messages in when sql is called from another program.

Getting all stations in survey 'B10-92' take all the columns.

select * from fiskar.stodvar where leidangur = 'B10-92': 1)

Take only 3 columns synis_id, depth and station and add the condition that depth must

be registered.

select synis,dypi_kastad,stod from fiskar.stodvar where leidangur = 'B10-92' and
dypi_kastad is not NULL; 2)

In Oracle the expression NULL is associated with a missing value.

The next step is to find a way to select all length measurements associated with

certain stations. One way to do so is to write

select synis_id,lengd,fjoldi from fiskar.lengdir where synis_id in
(60103,60106,60107,60108); 3)

This method will obviously become rather cumbersome when the stations are more

than few so some method of selecting the right station out of the station file and using

that selection will be neeeded. This is where joining of tables comes into the picture

but the type of queries shown in 3 is common if queries are generated in R. (see

later). Example of query when tables are joined is this query which selects all length

measurements of cod (tegund=1) in survey 'B10-92' where the number of the

statistical square is greater than 500. (reitur > 500)

select fiskar.stodvar.synis_id,lengd,fjoldi,reitur from fiskar.stodvar, fiskar.lengdir
where where fiskar.stodvar.synis_id = fiskar.lengdir.synis_id and leidangur='B10-92'
and reitur > 500 and tegund = 1; 4)

Or equivalently to make the query a little simpler looking

select a.synis_id,lengd,fjoldi,reitur from fiskar.stodvar a, fiskar.lengdir b where
a.synis_id = b.synis_id and leidangur='B10-92' and reitur > 500 and
tegund = 1; 4a)

The only difference here is that the abbreviations a and b are used for the tables

fiskar.stodvar and fiskar.lengdir. The table name must be associated with the column

synis_id as it exists in all tables. The main difference between this query and the

former is the joining condition where a.synis_id = b.synis_id. This condition is to

ensure that only those records of table be that match the selected records of table a

will be selected.

The final step is what to do if we want to take sum, mean or some other function

disaggregated by something. Then the expression group by in sql becomes important

but it tells by which variables to disaggregate. An example is this queary which

counts the number of fishes measured in survey B10-92 disaggregated by square,

length, and species. Note that all the variables to be used in the disaggregation must

be included in the list of selected variables as anything else would not make sense.

select reitur,lengd,tegund,sum(fjoldi),count(*) from fiskar.stodvar a, fiskar.lengdir b
where a.synis_id = b.synis_id and leidangur='B10-92' group by reitur,lengd,tegund;
5)

The function count(*) counts the number of records for each disaggregation. Other

variables than those used in the disaggregation can usually not be included. A query

like

select reitur,lengd,tegund,sum(fjoldi),count(*) a.synis_id from fiskar.stodvar a,
fiskar.lengdir b where a.synis_id = b.synis_id and leidangur='B10-92' group by
reitur,lengd,tegund; 5a)

is a nonsense. synis_id can not be associated with the selected disaggregation.

One important thing is how to treat missing values in sql. Missing values present

difficulties in many applications and the user must know how to treat them. In R

missing values are called NA but in sql NULL. The most common actions taken

when missing value is present are:

1. Skip the record. An example could be if temperature was recorded at each

station in a survey but was missing at some stations. Those stations would

then not be used in calculations of mean temperature.

2. Put the value to 0. An example would be if the mean catch per area was to

be found from a database with each tow registered. Areas with no tows

registered would then be included with zero catch.

An example of a query where only records with age, maturity and sex registered are

selected is.

select a.synis_id,kyn,kynthroski,lengd,aldur from fiskar.stodvar a, fiskar.kvarnir b
where a.synis_id = b.synis_id and leidangur='B10-92' and reitur > 500 and
tegund = 1 and aldur is not NULL and kyn is not NULL and kynthroski is not NULL;
(6).

In sql two types of joining exist, join and outer join. In outer join all the records are

included but else only the records that exist in both tables. To take an example the

tables fiskar.stodvar and fiskar.numer will be connected. In fiskar.numer the number

measured and counted fishes are stored. (fj_maelt, fj_talid)

select a.synis_id,kastad_n_breidd,kastad_v_lengd,NVL(fj_maelt,0)+NVL(fj_talid,0)
from fiskar.stodvar a, fiskar.numer b where a.synis_id = b.synis_id and
leidangur='B10-92' and tegund = 1; (7)

Using R to acess Oracle.

The following section describes ways to get data from Oracle into R or Splus. Most

of commands do only apply to unix systems or windows computers running R and

Oracle client. Working on a network connected PC the user can get the data by

starting Splus on unix in the reflection window, and then transferring the data to the

PC as described in section,

There are various ways to acess Oracle from Splus and R. One is to use a function

called ImportData that can read from Oracle tables. This function which can also read

excel tables and ascii files is described in the help. It is though relatively limited for

reading from Oracle. If an Oracle client is installed on a windows computer R has no

problem in getting data from the Oracle database.

 function called sql is available on the unix and computers and windows computers

running Oracle client. The function takes one required argument which is the sql

command. An example is this command which finds all cod larger than 100cm and

stores in an object called Codgt100

 Codgt100 <- sql("select * from fiskar.lengdir where tegund = 1 and lengd > 150")

 8)

One important thing about the function sql is that the command should not end with ;
as usually in sql. If the ; is included an error message will appear. The function sql

changes _ in column names to . so a column with the name synis_id in Oracle will be

synis.id in Splus. This is for convenience as _ has be reserved for assignment in Splus

and a column with the name synis_id would have to be referred to within quotemarks.

(data$synis_id would not work but data$"synis_id" would be needed).

Writing sql commands where a number of tables are joined can at times be rather

cumbersome. Even reading from the station file can be cumbersome as it is currently

split in 3 parts that have to be joined. (fiskar.stodvar, fiskar.togstodvar,

fiskar.umhverfi). Hopefully these tables will be merged in the future. It is relatively

easy to generate sql commands of the form shown in 3) in Splus. Then the stations of

interest are selected stored in a dataframe. In Splus a powerful function called paste is

available to generate the sql. To take an example if the stations of interest is stored in

a data frame called st with synis.id one column the command

le <- sql(paste("select synis_id,lengd,fjoldi from fiskar.lengdir where tegund = 1 and
synis_id in ("paste(st$synis.id,collapse=","),")")) 9)

will select all length measurements of species 1 (cod) from those stations. The

expression is ugly looking but the user can see the effects of the inner command

paste(st$synis.id,collapse=",") and also print out the command. What is confusing

here is also that some of the brackets are for the sql (those within quotemarks) and

some for the Splus command. Users are encouraged to read about the paste command

and the difference between the arguments sep and collapse and make a vector

command <- paste("select synis_id,lengd,fjoldi from fiskar.lengdir where tegund = 1
and synis_id in ("paste(st$synis.id,collapse=","),")")
print(command)
le <- sql(command) 9a)

Splus function for the fish measurement and stomach content
database.

The fish measurement database is one of the most commonly used database at the

marine reasearch institute and a number of special purpose programs have been made

to read from that database. The name of the programs are.

1. lesa.stodvar. Reading station information from fiskar.stodvar, fiskar.togstodvar and

fiskar.umhverfi.

2. lesa.numer. Reading information on number of measured and counted fishes, total

catch etc. from the table fiskar.numer.

3. lesa.lengdir. Reading information on length distribution from the file fiskar.lengdir.

4. lesa.kvarnir, Reading information on otholith samples from the table

fiskar.kvarnir. Information on weighed fish is also stored in this table even though

the otholiths are not sampled (age is then NULL)

5. join Connect two different tables by an index. Similar to merge but has some

added capability but also a number of limitations compared to merge.

6. lesa.stakir. Read information from the predator table faeda.f_fiskar.

7. lesa.flokkar. Read from the old predator table containing the bulked stomach

content data (faeda.f_flokkar) .

8. lesa.hopar. Reading diet information from specified stomachs.

9. add.hopar . Adding information on specified preys to a dataframe generated by

lesa.stakir or lesa.flokkar.

10. lesa.f.lengdir read information on length measurements of specified prey at

specified stations.

11. Lesa.allir.hopar Getting all stomatch content information from specified

stomachs (by flokk.id)

12. fjperstod. Getting the number of fishes at each station. A column with the

number of fishes is added to the stationfile.

13. afli.per.stod Getting the amount caught at each station. A column with the

number of fishes is added to the stationfile.

All the programs have and argument called oracle. If it is TRUE data are obtained

from the Oracle database but if it is false the data are obtained from R data frames

that contain complete Oracle tables. The syntax of the calls is the same whether the

data are obtained from the Oracle data base or the data frames. The data frames are a

mixture of the tables fiskar.leidr_stodvar,

The name of the dataframes fiskar.stodvar,fiskar.lengdir, fiskar.kvarnir, fiskar.numer

and fiskar.leidr_stodvar, fiskar.leidr_lengdir, fiskar.leidr_kvarnir, fiskar.leidr_numer.

For few problematic stations 1e6 has been added to the synis_id from the leidr tables

but those are stations where the synis_id of a old station in the leidr tables is the same

as of a recent stations in the traditional tables. All synis_id since 1985 are though

unchanged. When reading from oracle the function lesa.lengdir , lesa.numer and

lesa.kvarnir have the argument leidrett reading from the table fiskar.leidr_*** when

this argument is T. A function called lesa.leidr.stodvar does also exist.

When working with stomach content data base many things that are not logical show

up. The reason is historical but the data used to be stored in a database completely

seperate from the measurment data base and therfore the owner of the tables is

“faeda” instead of “fiskar”. The most obvious problem is that the predator table

(faeda.f_fiskar) is not the same table as fiskar.kvarnir. (the old predator table would

for the bulked stomachs would still have to exits)

All data obtained by the function has dot in column names where we have _ in R.

(synis_id becomes synis.id etc). The reason is that in Splus _ was interpreted as an

assignment operator and could therefore not be used in column names except accessed

within quotemarks. If the user does want to keep _ in names sql can be called with

dots=F.

The names of the dataframes in the fjolst package are

stodvar tables fiskar.stodvar, fiskar.togstodvar and fiskar.umhverfi and

 fiskar.stodvar_leidr

all.nu table fiskar.numer and fiskar.numer_leidr

all.le table fiskar.lengdir and fiskar.lengdir_leidr

all.kv table fiskar.kvarnir and fiskar.kvarnir_leidr

leidr.stodvar table fiskar.stodvar_leidr

fflokkar table faeda.f_flokkar (predator file for bulked stomachs)

ffiskar table faeda.f_fiskar (predator file for individual stomachs)

fhopar table faeda.f_hopar (information about prey items)

flengdir table faeda.f_lengdir(length distribution of prey old samples)

fstaerdir table faeda.f_staerdir (length distribution of prey new samples)

fkynthroski table faeda.f_kynthroski. (detailed info about pre ysparimæling)

