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Three approaches are commonly used to Fit surplus production models to observed data: effort-averaging methods; 
process-error estimators; and observation-error estimators. We compare these approaches using real and simulated 
data sets, and conclude that they yield substantially different interpretations of productivity. Effort-averaging 
methods assume the stock is in equilibrium relative to the recent effort; this assumption is rarely satisfied and 
usually leads to overestimation of potential yield and optimum effort. Effort-averaging methods will almost always 
produce what appears to be "reasonable" estimates of maximum sustainable yield and optimum effort, and the r2 
statistic used to evaluate the goodness of fit can provide an unrealistic illusion of confidence about the parameter 
estimates obtained. Process-error estimators produce much less reliable estimates than observation-error 
estimators. The observation-error estimator provides the lowest estimates of maximum sustainable yield and 
optimum effort and is the least biased and the most precise (shown in Monte-Carlo trials). We suggest that 
observation-error estimators be used when fitting surplus production models, that effort-averaging methods be 
abandoned, and that process-error estimators should only be applied id simulation studies and practical experience 
suggest that they will be superior to observation-error estimators. 

On emploie commun6ment trois methodes pour ajuster les moddes de production exc6dentaire aux r6sultats 
observes; il y a les methodes de la moyenne d'effort, les estimateurs des erreurs de traitement ainsi que les 
estimateurs des erreurs d'observation. Nous comparons ces trois demarches au moyen d'ensembles de donn6es 
reelles et simul6es, et nous parvenons A la conclusion que ces m6thodes conduisent A des interpretations largement 
diff6rentes de la productivite. Les methodes fond6es sur les moyennes d'effort suppssent que le stock est en 
kquilibre relativement 2 Ifeffort recent; c'est rarement le cas, mais cela conduit ordinairemerit A une surestimation 
du rendement potentiel et de I'effort optimal. Ces mkthodes produiront presque toujours ce qui semble Gtre des 
estimations (( raisonnables D du rendement soutenable maximal et de I'effort optimal, et la valeur statistique r2 qui 
sert h 6vaiuer la validit6 de i'ajustemeeat peut donner I'illusion nori fondee de confiance dans les estimations des 
paramkres qui sont obtencres. bes estimateurs d'erreurs de traitement donnent des estimations beaucoup moins 
fiables que les estimateurs des erreurs d'observation. Ces derniers conduisent aux estimations les plus faibles de 
rendement soutenable maximal et d'efiort optimal; ce sont aussi les estimateurs les plus pr6cis et qui cornportent 
le moins d'erreur systkmatique (selon la mkthode Monte-Carlo). Nous proposons d'utiliser des estimatea~rs d'erreurs 
d'observation lors de B'ajustement de moddes de production excedentaire, drabandowner les m6thodes de 
moyenne des efforts, et de n'appliquer les estimateurs d'erreurs de traitement que lorsque des etudes de simulation 
et que l'expkrience immkdiate donnent 2 penser que ces estimateurs seront saap6rieurs aux estimateurs d'erreurs 
d'observation. 
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T he simplest models sf  fish population dynamics consider 
only the changes in the exploitable biomass of the fishable 
stock. These models are generally called surplus 

production models (Hgicker 1935) s r  more precisely biomass 
dynanics models (Hilbsm and Wdters 1992). In their simplest 
fom,  only a time series sf catch and a relative abundance index 
(often standardized catch-per-unit effort, CPUE) are needed to 
estimate the model pameters.  From these estimates, two 

quantities of considerable importance to management can be 
derived: the maximum sustainable yield (MSY) and the fishing 
effort at which MSY will be achieved (EMSY - referred to as 
optimal effor%, &so sometimes denoted asfop). The major appeal 
of biomass dynamics models is that they can be applied in a 
situation in which the only data are catches and a relative 
abundance index. The computatjlond simplicity of some of the 
fitting procedures for biomass dynamics models has meant that 



Biomass 
FIG. 1.  A generic surplus-production function. 

they have been widely used. Paucity of data is often a problem 
associated with a developing fishery, so that biomass dynamics 
models are frequently applied in this situation. 

While age- and size-structured models (e.g., Deriso et al. 
1985; Pope and Shepherd 1985; Gavaris 1988; Bergh and 
Johnston 1992) are used by many management agencies which 
have access to a time series of catch-at-agelsize data, biomass 
dynmics models are still used in the management sf many 
fisheries. This may be because the ageisize compositions of the 
histoec catches are not available or reliable. Another reason for 
considering biomass dynamics models is that in some situations 
they can provide more accurate and precise estimates of 
management-related quantities than more complex approaches 
(Ludwig and Wdters 1985; Punt 1988, 1992a, b)* 

The method used to fit a biomass dynmics model to the 
observed data has been shown to be of much greater importance 
in terns of the reliability of estimated pameters  than the 
algebraic form of the underlying population dynamics model 
(Punt 1988, 1992b). There are several ways to fit a biomass 
dynamics model to a set of observed data. However, only three 
have been widely used: (a) effort-averaging methods (Gulland 
1961 ; Fox 1973, (b) process-error estimators (Wdters and 
Hilbom 1976; Schnute 1947), md (c) observation-error estima- 
tors (Pella and nrnlinson 1969; Butterworth and Andrew 1984; 
Ludwig and Wdters 1985) 

Monte-Cmlo simulation testing of estimation methods has 
shown that effort-averaging approaches are frequently highly 
(positively) biased, and process-enor estimators are often very 
imprecise (Hilborn 2979; Uhler 1980; Punt 1988, 1992b). 
However, these two approaches continue to be used and even the 
most recent applications (e.g., Bartoo and Shiohma 1985; 
Sparre et al. 1989; Yeh et d. 199 1) do not mention the existence 
of observation-error estimators nor do they appear to be aware 
of the deficiencies of the estimation methods being used. 'This is 
perhaps not surprising since the two most commonly-used 
textbooks in fisheries (Ricker 1975; Gulland 1983) do not 
mention process- or obewation-error estimators. 

The objective of this paper is to review and compare the three 
methods and to show how the uncertainty associated with the 
estimates can be evaluated. No such comparison now exists; 
HiHbom and WTdaers (1993) provide a brief review of these 
methods but do not provide direct csmpa~son nor do they show 
the computational procedures for calculating confidence bounds 
by likelihood profile. Butterworth and Andrew (1987) compare 
the methods by evaluating tbe precision of their estimates off& 

hawesting strategy TACs for the four hake stocks off southern 
Africa, but they do not comment on the bias associated with these 
methods nor do they consider stock dynanics and perturbation 
histories other than those for hake. 

The comparison includes two steps. First, the thee estimation 
mthsds are applied to the actual data for three major marine re- 
sources [the Cape hake (Merkuccius capensis and M. paradoxus) 
stock off northern Namibia, New Zealand rwk lobster (Jasus 
edwwrdsii), and the south Atlantic albacore (TIzunnus alakunga)]. 
These thee data sets were selected because surplus-production 
models have been recently applied to them. Annual age- 
composition data do not exist for the rock lobster and albacore 
stocks so it is not possible to apply an age-based stsckassessment 
procedure to them. Age-composition data for the yems 1965 to 
1989 axe available for the hake stock, but are of questionable 
value. Punt md Butterworth (1989) applied a Laurec-Shepherd 
ad hoc tuned VFA to the data for this stock md found the 
relationship between fishing effort and fishing mortality to be 
extremely poor - to such an extent that the estimates of the 
quantities of importance to management were essentially 
worth1ess. The scientific basis for the TACs set by the 
International Commission for the South East Atlantic (ICSEAH) 
for this resource was thus based on fits of surplus-production 
models to catch and catch-rate data. The data sets for two of these 
three stocks (albacore and rock lobster) consist of a time series 
of increasing effort and decreasing index of abundance, which 
(Hilbom 1979) called a "one-way-trip9' and showed were unin- 
formative. The data set for the Cape hake stock is somewhat 
more informative as the index of abundance initially decreases, 
but then increases when effort is reduced. 

The second part of the comparison involves a Monte-Carlo 
simulation evaluation of the estimation ability of the three 
methods. Simulations are based on each of the thee stocks in 
order to detect the effects of the length of the data series and the 
extent of data contrast on estimation ability. 

Models and Estimators 

Biomass Dynamics Models 

The essential feature of a biomass dyn cs model-estimation 
procedure is the pxameterization of the relationship between 
fishing intensity and long-term sustainable yield based on an 
assumed relationship between stock biomass and production. A 
number of alternative functional %oms for this relationship exist, 
but d l  have the general shape shown in Fig. 1 [see the s m q  
given in Punt (1988)j. Deteslrainisticdly, all biomass dynamics 
models are of the f o m  

where By is the (exploitable) biomass at the start of year y, 
g(B) is surplus production as a function of biomass, for 
example either g(B) = rB(1 - B/K)  (Schaefer 1954 form), 

= rB(l-  log(B)Ilog(K)) (Fox 1970 form), or g (B) = ' 
P 

X B (1- ( B / K ) @ )  (Pella-Tomlinson 1969 form), r is the intrin- 
sic growth rate parameter, K is the average biomass level 
prior to exploitation, q is the catchability coefficient, Cy is 
the catch during year y ,  and I,, is a index of relative 
abundance for year y. 
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Note that in the Pella-Todinson foam, the rip term is often 
omitted when the formula is presented. The parameter p in the 
Pella-Todinsorr foam controls the asymmetry of the sustainable 
yield versus stock biomass relationship. It can be shown that the 
Schaefer f o m  is equivalent to the Bella-Todinson form with 
p = 1 and that the Fox form is the limit of the Pella-Todinson 
f o m  asp  + 0. 

The various approaches to fitting biomass dynamics models 
to observed data considered in this paper (effort-averaging, 
observation-error, and process-error), differ in how error is 
introduced into Equations (I) and (2). The following discussion 
considers the case in which only one index of abundance is 
available, 

Equilibrium Estimators 

MSY and EMS, can BPe estimated by assuming that the rate of 
change of biomass (i.e., dB/dt) is zero for all years (i.e., Bfil = 
B, = Constant), and assuming that Equation (2) is exact. Now, it 
is often the case that the index of abundance (Iy is a time series 
of catch-rates (i.e., qB, =I, = C, / E, ,  where Ey is the fishing 
effort during year y). Solving Equation (I) for C, after assuming 
that B ,,+, = By, and after substituting C, / (qE,) = By, gives 

Equation (3) can then be solved for C, / E,: 

Bf we define the first tern ( Q K ) ~  to be a new parmeter a and the 

second term 
pq + l ~  

to be a new parameter b, then sum of 
r 

squares estimates of the parameters a, h, and p can then be 
obtained by minimizing the quantity 

Y 
A 

where (CIE), is the observed catch-rate for year y and (C / E ),. 
is the model-predicted catch-rate for year y. 

If the value of p is assumed to be one, estimates for the 
parameters a and b can be obtained using standard linear 
regression techniques. Estimates of MSU and EMSY are obtained 
by means of the formulae 

Effort-Averaging Approaches 

It is recognized that fish stocks are rarely, if ever, in 
equilibrium. The most common approach to overcome this 
difficulty is to replace effort of the right hand side of Equation 
(4) by a weighted average fishing effort (Gulland 1961; Fox 
1975). R e  common way in which ts obtain the weighted average 
fishing effort for year y is by means of the formula suggested by 
Fox(1975), i.e.: 

where k is the number of age classes being fished. 
Combining Equation (4) with Equation (7) assumes recmit- 

ment is independent of spawner stock size; the stock size 
depends only on historical effort and not the size of the stock in 
the recent past (no spawner recruit effect). This assumption is 
not generally acknowledged by users of the method and effort- 
averaging methods we in practice an ad hoc approach for dealing 
with non-equilibrium conditions. 

Process-Error Estimators 

A process-error estimator is based on the assumption that the 
observations are made without enor and that all of the error 
occurs in the change in population size [i.e., Equation (2) is 
assumed to be exact and Equation (1) is assumed to be subject 
to error]. For the Pella-Todinson form of the biomass dynamics 
function, substituting I, for qB, in Equation (1) and simplifying 
gives 

For the case in which p -1 (the Schaefer fom), Equation (8) 
can be written in a form which is Binear in its parameters: 

In this form, estimates of r, q, and K c m  be obtained by multiple 
linear regression. 

A large number of variants of this general approach exist. For 
example, Schnute (1977) provides the vakmt of Equation (9) 
which results from replacing Equation (I) with a continuous 
equation, while Lleona-t et al. (1985) and kleonart and Sdat 
(1989) present a process-error estimator based on the concept of 
the inertia of a stock. 

Observation-Error Estimators 

An observation-error estimator (Pella and Tolrmlinson 1969; 
Butterworth and Andrew 1984; Ludwig and Walters 1985; 
Ludwig et al. 1988) is constructed by assuming that the 
population dynamics equation (Equation 1) is deterministic and 
that all of the error occurs in the relationship between stock 
biomass and the index of abundance. The stock biomass time 
series is estimated by projecting the biomass at the start of the 
catch series (Bifith1) forward under the historic annual catches. 

Assuming that the error in Equation (2) is multiplicative and 
log-normal wih a constant coefficient of variation (i.e., 
I,, = qB,Q, E - N(0; d)), the estimates of the model parameters 
(B,,,, r, q, and K )  are obtained by maximizing the appropriate 
likehhood function: 

where the product is over all years (y) for which CPUE data are 
available: 
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where pa is the number of data points. 
Equation 410) is an expression which is non-linear in its four 

parameters and so a non-linear miniimization approach (e.g., 
Press et d. 1986) must be applied to obtain values for these 
parameters. It can be shown that the value of q which minimizes 
Equation (10) is given by the formula 

Two other common assumptions regarding observation-error 
noise are that it is either additive md normal with a constant 
standard deviation (i.e., I, = qB, + E, E - N (0; a')), or additive 
and normal with a constant coefficient of variation (i.e., = 
qB, + E,  E - N(O; ( O ~ B , ) ~ ) ) . T ~ ~  maximum likelihood estimates 
of q for these choices of error structures are for an additive 
nsmal  

and for a constmt CV 

Hn practice, the likelihood surface is usually relatively flat near 
its maximum value (e.g., K v a d  and Bledsoe 1978) and it is often 
necessary to introduce additional constraints (such as that 

= A'). Fletcher (1978) discusses the source of tl-nis flatness 
while Punt (1 990) found by simulation that for the Cape hake 
stock off northern Namibia, even in situations in which Binitial/K 
is substantidly different from unity, better estimation per- 
formance is achieved by fixing Binit,,IK at unity than by 
estimating it. 

Uncemianty of Estimates and Coddence Bounds 

One way to quantify the uncertainty associated with an 
estimate is to compute its confidence bounds. The thee  most 
frequently used methods are: asymptotic methods which assume 
that the likelihood function is quadratic near its minimum 
(Draper md Smith 1966), bootstrap approaches (e.g., Efron 
2982; Want and Butterworth 1993), and likelihood profile 
(Venzon and Moolgavkor 1988). Likelihood profile is used here 
because of its generality and computational ease. 

The basic principles of likelihood and likelihood ratio can be 
used to define the confidence bounds for estimated pameters  
of any model for which the likelihood can be determined (Press 
et dak. 2986, p. 532; Venzon and Moolgavkor 1988). For a single 
parameter p the confidence interval is defined as all values of 
parameter p that satisfy the inequality 

where i5(qP,,) is the log likelihood of the most likely value of 
p and x:,,, is value of the chi-squared distribution with 1 df at 
confidence level I - a. 

Thus, the 95% confidence interval for p encompasses d l  
values of p for which twice the difference between the log 
likelihood and the log likelihood of the best estimate of p is less 
than 3. $4. 

Likelihood profiles can be used to determine confidence 
bounds for the parameters either jointly or individwlBy. The 
confidence region for n parameters is estimated based on the X 2  
distribution with n degrees of freedom. The likelihood profile 
method is preferred because it is computationally more efficient 
than bootstrapping and because many confidence regions are 
asymmetric (i.e., in two dimensions are often banana-shaped) 
rather than symmetric ellipses as assumed by asymptotic 
methods. 

Application to Real Data 

To ensure that comparisons made in this section are 
comparable, d l  data were fit to the Schaefer form of the surplus 
production function (i.e., p = I), and for the effort-averaging 
method k (see Equation 7) was set to 3. 

The results for each stock are given in the s m e  format. The 
catch-rate data used in the assessments are presented in Table 2 
and the estimates of a number of management-related quantities 
for each assessment method in Table 2. Note that the effort- 
averaging method does not provide estimates of biomass, so the 
estimates of quantities related to biomass are left out of Table 2. 
For each stock, a flgure (Fig. 2,4, and 6) is provided showing 
two plots. The first plot (panel a) shows the actual catches plotted 
against the corresponding efforts, with the equilibrium 
catch-effort. curves obtained from each estimation method 
superimposed. The second plot (panel b) shows the catch-rate 
time series with the fits s f  the process- and observation-enor 
estimators superimposed. Finally, for each stock, a figure (Fig. 3, 
5, and 7) shows the point estimates of MSY and EMS, and the 
95% confidence bounds for these parameters computed using the 
method of likelihood profile. 

South Atlantic Albacore 

Up to 1998, the assessment of this stock by ICCAT (the 
International Commission for the Conservation of Atlantic Tuna) 
was based solely on the application of the effort-averaging 
method of fix (1975). The value of p used in these assessments 
was 8.001 (Yeh et id. 1991)e 

The results of the thee  assessments are different in several 
respects, particularly regarding productivity (Table 2, Fig. 2 
and 3). The effort-averaging method produces the most 
optimistic appraisal of the situation. According to this assess- 
ment, MSY is just larger than 28 000 t and the optimal effort is 
over 108 000 000 hooks. In only 6 yr is the annual catch larger 
than the estimated MSY (Table 1) which makes it rather difficult 
to see why the catch-rate should have dropped to roughly 30% 
of its initid size. The observation-error estimator is the least 
optimistic sf the thee assessments suggesting an MSY of only 
19 650 t and an optical effort level roughly half that suggested 
by the effort-averaging method. The estimates of MSY and EMsu 
obtained from the application of the process-error estimator are 
intermediate between the estimates obtained from the other 
methods (Table 2). 

One of the reasons for the high estimates of MSY and %sY 
provided by the effort-averaging method is that itthe are a 
number of very high (EMS,, MSY) data points (see Fig. 2a). 
Since the effort-averaging method assumes that the stock is 
relatively close to equilibrium, it attempts to pass the equi1ib.w 
catch-effort curve though these points. The other two methods 
assume instead that the catch taken reflects surplus production 
and reduction of standing stock. It is possible to infer f om the 
trend in the catch-rate data that the stock has been declining over 
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TABLE 1.  Catch and catch-rate data for the three stocks considered in this paper. 

south Atlantic 
albacore 

New Zealand Northern Namibian hake CBUE 
rock lobster Catch Catch (kg'100 

Year Catch (t) CPLTE ('0410 t) CPLE ('000 t) hooks) 

1945 809 3.49 
1946 854 3.38 
1947 919 3.18 
1948 1360 3.56 
1949 1872 1.79 
1954) 2672 4.35 
195 1 2834 2.33 
1952 3324 2.57 
1953 4160 2.88 
1954 554 1 3.85 
1955 5009 4.16 
1956 6547 4.34 
1957 5049 3.70 
1958 4447 2.37 
1959 4018 2.46 
1960 3762 2.06 
1961 4042 2.21 
1962 4583 2.19 
1963 4554 2.44 
1964 4597 2.14 
1965 4984 2.18 93.5 10 1.78 
1966 5295 2.13 2 1 2.444 1.31 
1967 4782 1.86 195.032 0.9 1 15.9 61.89 
1968 4975 1.53 382.712 0.96 25.7 78.98 
1969 4786 1 .a2 320.430 0.88 28.5 55.59 
19'70 4699 1.45 402.467 0.90 23.7 44.61 
1971 4478 1.40 365.557 0.87 25.0 56.89 
1972 3495 1.09 606.084 0.72 33.3 38.27 
1973 3784 1.23 377.642 0.57 28.2 33.84 
1974 3643 1.12 318.836 0.45 1 9.7 36.13 
1975 2987 0.92 309.374 0.42 17.5 41 -95 
1976 331 1 1.02 389.020 0.42 19.3 36.63 
8 977 3237 1 .OO 276.901 0.49 21.6 36.33 
1978 3418 1.05 254.251 0.43 23.1 38.82 
1979 4050 1 -09 170.006 0.40 22.5 34.32 
1980 41 90 1.03 97.181 0.45 22.5 37.64 
1981 4058 1.01 90.523 0.55 23.6 34.01 
1982 433 1 0.98 176.532 0.53 29.1 32.16 
1983 4385 0.88 214.181 0.58 14.4 26.88 
1984 491 1 0.85 228.672 0.64 13.2 36.61 
1985 4856 0.84 212.177 0.66 28.4 30.07 
1986 4657 0.8 1 231.179 0.65 34.6 30.75 
1987 4500 0.84 136.942 0.61 37.5 23.36 
1988 3128 0.68 212.000 0.63 25.9 22.36 
1989 3318 0.62 25.3 21.91 
1990 2770 0.54 

most of the period and so almost all of the catches reflect surplus 
production plus some fraction of the standing stock. 'Phis is why 
the equilibrium catch-effort curves for the process-error 
estimator and particular1y the observation-enor estimator lie 
below most of the observed data points (see Fig. 2a). 

The estimates of current depletion obtained from the 
sbservation- and the process-error estimators are quite similar at 
roughly 32%. This result is not particularly surprising since the 
catch-rate series essentially determines the vdue of this quantity. 
However, there are major discrepancies between the estimates 
of current biomass provided by these two approaches. The 
observation-error estimator suggests that the stock was initially 
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large with low productivity while the process-enor estimator 
suggests exactly the opposite. 

The apparent conilict between the process-error and 
observation-error point estimates of MSY and Em, are minor 
when the likelihood profile 95% confidence bounds are 
considered (Fig. 3). It is clear from this figure that the process- 
enor estimator is extremely imprecise. Surprisingly, the results 
of the effort-averaging method appear to be quite precise and do 
not overlap with those of the (very precise) observation-emr 
estimator. Hilborn (1979) showed that when the data are a 
one-way trip (constantly declining index of abundance, 
constantly increasing effort), a process-error estimator attempts 
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TABLE 2. Estimates of a number of management quantities obtained by applying three rnodd-estimation 
procedures to the data in Table 1, Effort units are as in Table 1. 

Effort-averaging Bbserva&sn-emr Process-error 
Quantity ( & = 3 , g =  1) estimator estimator 

F- 

4 (X lo4) 
K (' 000 &) 
MSY ('000 t) 
BinitiaitiadK 
B,,~ ('000 t) 
~ c n m n t l  R 
EMSY 
CF 

r 
4 ( X  103 
K ('OW t) 
MSY (t) 
Bi~t idlK 
Bcumnt (8) 
&umntJ K 
EMSY 
rJ 

r 
4 ( X  lo4) 
K ('000 t) 
MSY (9000 t) 
BinitidlK 
Bcwent ('000 t) 
&urrent lK 
EMSY 
0 

South Atlantic albacore 

New ZewCand rock lobster 

Northern Namibian h a b  

to fit a 3-dimensional plane to a 2-dimensional line and will 
therefore be very imprecise. 

Note from the fornula given earlier that the observation-error 
estimation can use data from years where catch, but not catch- 
rate are known, and can use only occasional catch-rate data, 
while the process-enor method can only use pairs of catch and 
catch-rate data. 

New Zedand Rock Lobster 

This stock (data from Breen 1991) has been assessed using 
both effort-averaging methods (Fox 1975) md process-error 
estimators. Qualitatively, the results for this stock (Table 2, Pig. 4 
and 5 )  are the same as for South Atlantic albacore. The observa- 
tion-enor estimator provides the least optimistic appraisal once 
again, although this time it is the process-enor estimator which 
is the most optimistic (if only slightly). Both the process-error 
and the observation-error estimators suggest that h e  stock is 
very highly depleted (to roughly 16- 17% of K )  although there 
are marked diEerences between the estimates of K and hence 
current biomass produced by these two estimators. The prscess- 
error estimator indicates a highly productive but smdl resource 
whereas the observation-enor estimator suggests a highly 
unproductive resource which was initidly quite large (Table 2). 

Once again the results of the process-enor estimator are very 

imprecise (Fig. 5). The extremely high precision associated with 
the effort-averaging method is due to the fact that the method is 
essentially performing a regression on the catch-rate versus 
effort data, which, being a one-way trip, are highly correlated. 
Users of effort averaging methods have often used this high 
correlation (3 is often >0.95) as an indication that the model is 
correct. Note that in this case d l  the catch-eEort data p in t s  lie 
above the catch-effort curve estimated from the observation- 
effort estimator (Fig. 4a). This is because with the very low 
productivity rate estimated (0.0659, see Table 2), the catches are 
estimated to have been comprised almost entirely of standing 
stock. Surglaas-production is estimated to have been almost 
nothing over the period considered. 

Northern Namibian Hake 

The Namibian hake data set shows more data contrast, since 
the catch-rate starts to increase towards the end of the time-series 
(Fig. 6). This results in the observation-error approach providing 
very precise estimates, while the process-error and the 
effort-averaging estimator are quite imprecise (Fig. 7). Based on 
the arguments of Hilbom (1979) discussed above, the prscess- 
error estimator is expected to be more precise for this series than 
it is for a one-way trip. Wkile this appears to be true compared 
to the lobster data, it is hard to see that the hake estimates are 
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FIG. 2. (a) Catch and effort data for South Atlantic albacore with the 
equilibrium catch-effort curves obtained from the three estimation 
methods superimposed. (b) Catch-rate time series for South Atlantic 
albacore with the fits sf the process-error and observation-error 
estimators superimposed. 

FIG. 3. Point estimates md 95% likelihood profile confidence bounds 
for the estknates of MSY and E ~ s y  obtained for South Atlantic albacore 
using the three alternative estimation methods. 

more precise than the albacore estimates. The effort-averaging 
method has poorer precision because catch-rate is not correlated 
as closely with effort; the upturn in catch-rate reduces the 
correlation. 

Qualitatively, the results for this data set are as before. The 
effort-averaging approach is much more optimistic than the other 
two approaches and the observation-error estimator is the most 
pessimistic. One disconcerting feature of the results for the 

Year 

FIG. 4. (a) Catch and effoa data for New Zealand rock lobster with the 
equilibrium catch-effort curves obtained from the thee estimation 
methods superimposed. (b) Catch-rate time series for New Zedand rock 
lobster with the fits of the process-enor and obsenration-error 
estimators superimposed. 

18 

...-.M..-. Process Error 

EMSY 
FIG. 5. Point estimates and 95% likelihood profile confidence bounds 
for the estimates of MSY and EMSY obtained for New Zealand rock 
lobster using the three alternative estimation methods. 

process-error estimator is that it estimates that, at the start of 
exploitation (1965), the resource was almost twice its carrying 
capacity. While it is certainly possible that due to recruitment 
fluctuations, the biomass at the start of exploitation may have 
differed from the unexploited equilibrium biomass, it seems 
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RG. 7. Point estimates and 95% likelihood profile confidence bounds 
for the estimates of MSY and E ~ s y  obtained for northern Namibian 
hake using the thee alternative estimation methods. 

confidence bounds, the results of observation-error estimator are 
still much tighter than those of the process-error estimator. 

0 1 r I I I 

1965 1970 1975 1980 (985 1990 

Year 

FIB. 6. (a) Catch and effort data for northern Namibian hake with the 
equilibrium catch-effort curves o b ~ n e d  from the firee estimation 
methods superimposed. (b) Catch-rate time series for northem 
Namibian hake with the fits of the process-emor and observation-error 
estimators superimposed. 

difficult to accept that the biomass could have been as different 
horn K as is suggested by this assessment. The reason for this 
problem is, sf course, the extremely high catch-rates for the 
initid years (see Fig. 6b). me reas  the observation-error 
estimator interprets this as observation-error the process-error 
estimator assumes that the change in catch-rate between I965 
and 1967 reflects a real change (caused by a large process-error). 

S u m q  of Results from Three Data Sets 

It is not possible from the results of Table 2 and Fig. 2-7 to 
conclude which of the t h e  estimators is best, because we do 
not h o w  the true population parameters. However, certain 
general features can be concluded. First, the observation-error 
estimator provides the least optimistic appraisal while the 
effort-averaging method is the most optimistic. The process- 
error estimator is extremely imprecise. If the results of these 
assessments were to be pooled using, say, inverse variance 
weighting, the results for the process-error estimator would be 
given effectively no weight at all. 

The extremely high precision associated with the observation- 
error estimator may be fallacious. The estimates of confidence 
bounds are naturally contingent on the model being correct. Bunt 
and Butterworth (1993) using Monte-Carlo simulation, found 
that if the actual situation includes both process- and 
observation-error, estimates of variance obtained from the 
variance estimation procedures they considered were biased low 
by roughly 30%. Nevertheless, even if 30% is added to the 

We were unable to conclude from the previous exercise which 
of the various methods was "best," primarily because it is 
unknown what the correct values for the management quantities 
of interest are. One way to overcome this problem is by testing 
the estimation pedomance of each method by means of 
Monte-Cxlo simulation (Hilborn 1999; Uhler 1980; Ludwig and 
Wdters 1985; Ludwig et al. 1988; Punt 1988). 

Five hundred data sets were generated for each of the stocks 
based on the results of two of the estimztion methods (process- 
error and observation-error estimators). It is not possible to 
generate data sets based on the results of the effort-averaging 
method because it does not estimate the biomass time-series. For 
the observation-error estimator, the data sets were generated by 
adding noise to the model-predicted catch-rate series using the 
equation 

where (c /E)  is the catch-rate for year y in data set U, $ is the 
estimate of q obtained by applying the observation-error 

estimator to the actual data, By is the estimate of biomass at the 
start of year y obtained by applying the observation-error 

estimator to the actual data, and & is the standard deviation of 
the residuals of the fit of the observation-error estimator to the 
actual data, 

For the process-enor estimator, it would be desirable to apply 
the same basic procedure, namely: 

q; - N ( 0 ;  $2) 
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Northern New Zealand South Atlantic 
Namibian hake Rock Lobster albacore 

O = Observation-error estimator 
0 = Process-error estimator 

A - effort-averaging methad 

RG. 8. Relative error distributions for MSY and E ~ s y  for the three 
estimation methods, for each of the three stocks, The data sets used in 
the calculation of this Figure were generated using the f i t  and 
assumptions of the observation-emr estimator. 

A 

where ;, $, and K are the estimates of the model parameters, and 
o is the standard deviation of the residuals of the fit ~f the 
observation-error estimator to the actual data. 

This prescription can result in population trajectories which 
are very different from those produced by the original 
assessment. This in principle, is not a problem. Howevea; cases 
in which the population is rendered extinct before 1991 seem 
unrealistic. The obvious solution is to constrain the trajectories 
to those which are "similar" to the original data. This approach 
was used by Punt (1992b). Two cases have been considered, one 
in which d l  data sets that correspond to populations that did not 
go extinct before 1991 are considered, and one in which only 
those data sets that resulted in a current depletion which was 
within 10% of that reported in Table 2 are considered. 

n e  results of this exercise (Fig. 8-10) are presented in the 
form of relative error distributions. The distributions are 
represented by their lower 5 percentiles, medians, and upper 
5 percentiles. 

For data sets based on the fits of the observation-emr 
estimator (as described above), the results (Fig. 8) provide clear 
evidence that if the noise in Equations (1) and (2) is actually pure 
observation-error, then an observation-error estimator is to be 
preferred. The bias of the estimates provided by the obsemation- 
emor estimator is ody substantially larger than zero for the 
lobster example. The reasons for this are probably the fact that 

Northern New Pealand South Atlantic 
Namibian hake Rock Lobster albacore 

=. Observation-error estimator 
0 = Process-error estimator 

A - effort-averaging method 
FIG. 9. Relative enor distributions for MSY and EMSY for the three 
estimation methods, for each sf the three stocks. The data sets used in 
the calculation of this Figure were generated using the fit md 
assumptions of the process-enor estimator. Only those data sets which 
corresponded to a population which was not extinct at the end of the 
catch time series were considered. 

the estimate of i6r'' is very low for this stock (see Table 2) so that 
positive bias is more likely. The variance of the estimates of E$fSY 
and MSY are highest for the rock lobster example. This is a 
consequence of the higher value for a used in this case (see 
Table 2). 

As might have been anticipated, the effort-averaging approach 
is positively biased, This bias is lowest for Cape hake and largest 
for lobster. In all thee cases, the estimates are fairly tight about 
the mean. This result suggests that it is not sufficient to perform 
analyses which suggest than an estimate is precise - it may 
nevertheless still be substantidly biased. The process-error 
estimator is, in some respects, the poorest ~f the three 
approaches. It can be substantially positively biased (for rock 
lobster) and is the least precise of the thee methods (as might 
have been expected from the results presented earlier). 

The results for the process-error estimator suggest that when 
trajectories that go extinct are excluded (Fig. 91, we again see 
that the observation estimator is generally the least biased and 
most precise. The only exception is the lobster data set where the 
bias and precision of the effort-averaging method appea to be 
comparable to that of the observation-enor estimator. In all cases 
the process-error estimator is both more biased and much less 
precise than the observation-emor estimatoro 
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process-emor estimators only. The evidence presented in this 
Northern New Zealand South Atlantic 

Namibian hake Rock Lobster albacore 

63 = Observation-error estimatsr 
0 = Process-error estimator 

A - effort-averaging method 

FIG. 10. Relative error distributions for MSY and EMSY for the three 
estimation methods, for each of the t h e  stocks. The data sets used in 
the calculation of this Figure were generated using the fit m d  
assumptions of the process-emr estimator. Only those data sets which 
csmsponded to a current depletion which differed by less than 10% 
from the estimate provided by the process-error estimator were 
considered. 

If we exclude all trajectories that are not similar to those for 
the real data (Fig. 101, the results do not change very much. The 
bias of the obsemadon-error method for the rock lobster example 
is increased, however, md the process-enor and effort-averaging 
methods are in fact less biased for the lobster example, although 
much less precise. 

The bias of the effort-averaging method, and the high variance 
of the process-emor estimates make both of these methods 
extremely suspect. We believe that it is clear that the observation- 
enor method should be expected to provide more precise md 
more accurate estimates of parmeters, and if a single method is 
to be used, it should be the observation-error estimator. A 
rigorous assessment would include Monte-Carlo testing of 
alternative estimators as we have done in this paper. Such testing 
takes only a few hours on a desktop computer and should become 
standard practice. 

Under no circumstances should agency staff, conference 
organizers, reviewers, managers or journal editors accept 
assessments or publications that are based on effort-averaging or 

paper, combined with previously published papers ( h n t  1988; 
Paant 1992b; Hilbdsrn and Wdters 1992 etc.) make it clear that for 
most fisheries data sets observation-enor estimators sese superior. 
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Research. We thank several anonymous reviewers for comments, md 
U h k e  Hilborn for editorial assistance in the preparation s f  the 
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