
Introduction
Database design

Multi-table queries

Databases
3. Multi-table queries

Arni Magnusson

United Nations University

Fisheries Training Programme

6–9 Nov 2017

Introduction
Database design

Multi-table queries

Outline

What is a database

purpose, design, data types

Create database

software, import data

Query

get data, join tables, SQL language

Interface

connect to database from other program

Introduction
Database design

Multi-table queries

Goals

After this database course, you should:

1. Understand what a database is, and how it works

2. Be able to create a simple database

3. Be able to get data from any database

Introduction
Database design

Multi-table queries

Design rules
Logbooks

Database design

How do we design tables?

Introduction
Database design

Multi-table queries

Design rules
Logbooks

Design rules

1. Long format, not crosstab

2. Normalization, by splitting tables

In a nutshell:

Make tables as narrow as possible

Introduction
Database design

Multi-table queries

Design rules
Logbooks

Design rules

1. Long format, not crosstab

2. Normalization, by splitting tables

In a nutshell:

Make tables as narrow as possible

Introduction
Database design

Multi-table queries

Design rules
Logbooks

Long format

1. Long format, not crosstab

Introduction
Database design

Multi-table queries

Design rules
Logbooks

Long format

Data tables like this:

Not like this:

Species Year Catch
Anchovy 2001 . . .
Anchovy 2002 . . .
Anchovy 2003 . . .
Barnacle 2001 . . .
Barnacle 2002 . . .
Barnacle 2003 . . .
Catfish 2001 . . .
Catfish 2002 . . .
Catfish 2003 . . .
Dogfish 2001 . . .
Dogfish 2002 . . .
Dogfish 2003 . . .

Year Anchovy Barnacle Catfish Dogfish
2001
2002
2003

Introduction
Database design

Multi-table queries

Design rules
Logbooks

Design rules

1. Long format, not crosstab

2. Normalization, by splitting tables

In a nutshell:

Make tables as narrow as possible

Introduction
Database design

Multi-table queries

Design rules
Logbooks

Normalization

2. Normalization, by splitting tables

Introduction
Database design

Multi-table queries

Design rules
Logbooks

Normalization

Remember our first table:

Name Country Capital Siblings Cars Movie
.

.

.

How does it scale, if the table contains 7 billion rows?

Introduction
Database design

Multi-table queries

Design rules
Logbooks

Normalization

Remember our first table:

Name Country Capital Siblings Cars Movie
.

.

.

How does it scale, if the table contains 7 billion rows?

Introduction
Database design

Multi-table queries

Design rules
Logbooks

Normalization

Around 22 bytes per row:

Name Country Capital Siblings Cars Movie
Short Text Short Text Short Text Byte Byte Byte

∼6 ∼7 ∼6 1 1 1

Our table is then 7 billion × 22 ≈ 150 GB

The names of countries and capitals are taking up too much space

Introduction
Database design

Multi-table queries

Design rules
Logbooks

Normalization

Around 22 bytes per row:

Name Country Capital Siblings Cars Movie
Short Text Short Text Short Text Byte Byte Byte

∼6 ∼7 ∼6 1 1 1

Our table is then 7 billion × 22 ≈ 150 GB

The names of countries and capitals are taking up too much space

Introduction
Database design

Multi-table queries

Design rules
Logbooks

Normalization

Split data into People and Countries:

Name CountryID Siblings Cars Movie
Short Text Byte Byte Byte Byte

∼6 1 1 1 1

CountryID Country Capital
Byte Short Text Short Text

1 ∼7 ∼6

7 billion × 10 ≈ 70 GB

200 × 14 = 0 GB

Introduction
Database design

Multi-table queries

Design rules
Logbooks

Normalization

Split data into People and Countries:

Name CountryID Siblings Cars Movie
Short Text Byte Byte Byte Byte

∼6 1 1 1 1

CountryID Country Capital
Byte Short Text Short Text

1 ∼7 ∼6

7 billion × 10 ≈ 70 GB

200 × 14 = 0 GB

Introduction
Database design

Multi-table queries

Design rules
Logbooks

Normalization

One table

redundant
risk of inconsistent data/mistakes

more work to enter data and modify

waste of storage

but convenient for tiny datasets

Joined tables

efficient
enforces consistent rules

less work to enter data and modify

compact storage

generally recommended

Introduction
Database design

Multi-table queries

Design rules
Logbooks

Normalization

One table

redundant
risk of inconsistent data/mistakes

more work to enter data and modify

waste of storage

but convenient for tiny datasets

Joined tables

efficient
enforces consistent rules

less work to enter data and modify

compact storage

generally recommended

Introduction
Database design

Multi-table queries

Design rules
Logbooks

Normalization

One table Joined tables

Splitting tables like this is called normalizing

Introduction
Database design

Multi-table queries

Design rules
Logbooks

. . .

An SQL query walks into a bar and sees two tables.

He walks to them and says “Can I join you?”

Introduction
Database design

Multi-table queries

Design rules
Logbooks

. . .

An SQL query walks into a bar and sees two tables.

He walks to them and says “Can I join you?”

Introduction
Database design

Multi-table queries

Design rules
Logbooks

Logbook data

Logbook data from Icelandic fisheries

Introduction
Database design

Multi-table queries

Design rules
Logbooks

Logbook data

SELECT sum(tonnes) AS total
FROM catch

SELECT species,
sum(tonnes) AS total

FROM catch
GROUP BY species
ORDER BY species

SELECT species,
max(tonnes) AS highscore

FROM catch
GROUP BY species
ORDER BY species

Introduction
Database design

Multi-table queries

Design rules
Logbooks

Logbook data

SELECT sum(tonnes) AS total
FROM catch

SELECT species,
sum(tonnes) AS total

FROM catch
GROUP BY species
ORDER BY species

SELECT species,
max(tonnes) AS highscore

FROM catch
GROUP BY species
ORDER BY species

Introduction
Database design

Multi-table queries

Design rules
Logbooks

Logbook data

SELECT sum(tonnes) AS total
FROM catch

SELECT species,
sum(tonnes) AS total

FROM catch
GROUP BY species
ORDER BY species

SELECT species,
max(tonnes) AS highscore

FROM catch
GROUP BY species
ORDER BY species

Introduction
Database design

Multi-table queries

Design rules
Logbooks

Logbook data

SELECT sum(tonnes) AS total
FROM catch

SELECT species,
sum(tonnes) AS total

FROM catch
GROUP BY species
ORDER BY species

SELECT species,
max(tonnes) AS highscore

FROM catch
GROUP BY species
ORDER BY species

Introduction
Database design

Multi-table queries

Design rules
Logbooks

Logbook data

SELECT ship,
sum(tonnes) AS total

FROM catch c,
events e

WHERE c.event = e.event
GROUP BY ship
ORDER BY ship

SELECT gear,
sum(tonnes) AS total

FROM catch c,
events e

WHERE c.event = e.event
GROUP BY gear
ORDER BY gear

Introduction
Database design

Multi-table queries

Design rules
Logbooks

Logbook data

SELECT ship,
sum(tonnes) AS total

FROM catch c,
events e

WHERE c.event = e.event
GROUP BY ship
ORDER BY ship

SELECT gear,
sum(tonnes) AS total

FROM catch c,
events e

WHERE c.event = e.event
GROUP BY gear
ORDER BY gear

Introduction
Database design

Multi-table queries

Design rules
Logbooks

Logbook data

SELECT ship,
sum(tonnes) AS total

FROM catch c,
events e

WHERE c.event = e.event
GROUP BY ship
ORDER BY ship

SELECT gear,
sum(tonnes) AS total

FROM catch c,
events e

WHERE c.event = e.event
GROUP BY gear
ORDER BY gear

Introduction
Database design

Multi-table queries

Equijoin
Relationships
Postprocessing

Multi-table queries

How do we query many tables?

Introduction
Database design

Multi-table queries

Equijoin
Relationships
Postprocessing

Equijoin

The expression

WHERE table1.id = table2.id

is an equijoin, which is the simplest join type

This is equivalent to

WHERE table2.id = table1.id

Introduction
Database design

Multi-table queries

Equijoin
Relationships
Postprocessing

Equijoin

The expression

WHERE table1.id = table2.id

is an equijoin, which is the simplest join type

This is equivalent to

WHERE table2.id = table1.id

Introduction
Database design

Multi-table queries

Equijoin
Relationships
Postprocessing

Table relationships

Most joins represent a

one-to-many table relationship

which is equivalent to many-to-one

This means that on one side of the join,

the column has only unique values

Introduction
Database design

Multi-table queries

Equijoin
Relationships
Postprocessing

Table relationships

Introduction
Database design

Multi-table queries

Equijoin
Relationships
Postprocessing

Table relationships

Introduction
Database design

Multi-table queries

Equijoin
Relationships
Postprocessing

Table relationships

Introduction
Database design

Multi-table queries

Equijoin
Relationships
Postprocessing

In what gear is saithe mainly caught?

SELECT
g.english AS gearname,
sum(tonnes) AS total

FROM
catch c,
events e,
gears g,
species s

WHERE
c.species = s.species AND
c.event = e.event AND
e.gear = g.gear AND
s.english = ’Saithe’

GROUP BY
g.english

Introduction
Database design

Multi-table queries

Equijoin
Relationships
Postprocessing

Table relationships

Introduction
Database design

Multi-table queries

Equijoin
Relationships
Postprocessing

Table relationships

Introduction
Database design

Multi-table queries

Equijoin
Relationships
Postprocessing

Postprocessing query results

What do we do with the query results?

Introduction
Database design

Multi-table queries

Equijoin
Relationships
Postprocessing

Postprocessing query results

A query is just the first step

The next step is to analyze, create plots and summary tables

This is done outside the database, maybe in a spreadsheet or R

It is often convenient to run a simple query and then do
calculations afterwards in your preferred statistical software

Introduction
Database design

Multi-table queries

Equijoin
Relationships
Postprocessing

Postprocessing query results

A query is just the first step

The next step is to analyze, create plots and summary tables

This is done outside the database, maybe in a spreadsheet or R

It is often convenient to run a simple query and then do
calculations afterwards in your preferred statistical software

Introduction
Database design

Multi-table queries

Equijoin
Relationships
Postprocessing

Long format vs. crosstab

Data tables like this:

Not like this:

Species Year Catch
Anchovy 2001 . . .
Anchovy 2002 . . .
Anchovy 2003 . . .
Barnacle 2001 . . .
Barnacle 2002 . . .
Barnacle 2003 . . .
Catfish 2001 . . .
Catfish 2002 . . .
Catfish 2003 . . .
Dogfish 2001 . . .
Dogfish 2002 . . .
Dogfish 2003 . . .

Year Anchovy Barnacle Catfish Dogfish
2001
2002
2003

Introduction
Database design

Multi-table queries

Equijoin
Relationships
Postprocessing

Crosstab

Year Anchovy Barnacle Catfish Dogfish
2001
2002
2003

Cross tabulation is great for viewing, but not for storing data

Not part of standard SQL, but query results can be crosstabbed
afterwards:

Pivot table in a spreadsheet

xtabs in R

Introduction
Database design

Multi-table queries

Equijoin
Relationships
Postprocessing

Crosstab

Year Anchovy Barnacle Catfish Dogfish
2001
2002
2003

Cross tabulation is great for viewing, but not for storing data

Not part of standard SQL, but query results can be crosstabbed
afterwards:

Pivot table in a spreadsheet

xtabs in R

Introduction
Database design

Multi-table queries

Equijoin
Relationships
Postprocessing

Avoid slow queries

A simple query can sometimes take a long time to compute

This should be avoided, especially on a multi-user database system

To make a query run fast, use

WHERE x = value AND

y LIKE ’%pattern%’ AND

z IN (value1,value2,value3)

to return only the subset that you’re interested in

Introduction
Database design

Multi-table queries

Equijoin
Relationships
Postprocessing

Avoid slow queries

A simple query can sometimes take a long time to compute

This should be avoided, especially on a multi-user database system

To make a query run fast, use

WHERE x = value AND

y LIKE ’%pattern%’ AND

z IN (value1,value2,value3)

to return only the subset that you’re interested in

